Citation: | Ruopeng Yin, Tao Wang, Huanqin Dai, Junjie Han, Jingzu Sun, Ningning Liu, Wang Dong, Jin Zhong, Hongwei Liu. Immunogenic molecules associated with gut bacterial cell walls: chemical structures, immune-modulating functions, and mechanisms[J]. Protein&Cell, 2023, 14(10): 776-785. doi: 10.1093/procel/pwad016 |
[1] |
Adam A, Petit J-F, Lefrancier P et al. Muramyl peptides:chemical structure, biological activity and mechanism of action Mol Cell Biochem 1981;41:27-47.
|
[2] |
Agnihotri G, Ukani R, Malladi SS et al. Structure-activity relationships in nucleotide oligomerization domain 1 (Nod1) agonistic γ-glutamyldiaminopimelic acid derivatives J Med Chem 2011;54:1490-1510.
|
[3] |
Ahmed K, Turk JL, Turk John L. Effect of anticancer agents neothramycin, aclacinomycin, FK-565 and FK-156 on the release of interleukin-2 and interleukin-1 in vitro Cancer Immunol Immunother 1989;28:87-92.
|
[4] |
Alexander KL, Targan SR, Elson CO. Microbiota activation and regulation of innate and adaptive immunity Immunol Rev 2014;260:206-220.
|
[5] |
Anhê FF, Barra NG, Cavallari JF et al. Metabolic endotoxemia is dictated by the type of lipopolysaccharide Cell Rep 2021;36:109691.
|
[6] |
Apostolos AJ, Chordia MD, Kolli SH et al. Real-time non-invasive fluorescence imaging of gut commensal bacteria to detect dynamic changes in the microbiome of live mice Cell Chem Biol 2022;29:1721-1728.e5
|
[7] |
Aron-Wisnewsky J, Warmbrunn MV, Nieuwdorp M et al. Metabolism and metabolic disorders and the microbiome:the intestinal microbiota associated with obesity, lipid metabolism, and metabolic health-pathophysiology and therapeutic strategies Gastroenterology 2021;160:573-599.
|
[8] |
Bae M, Cassilly CD, Liu X et al. Akkermansia muciniphila phospholipid induces homeostatic immune responses Nature 2022;608:168-173.
|
[9] |
Brown AR, Gordon RA, Hyland SN et al. Chemical biology tools for examining the bacterial cell wall Cell Chem Biol 2020;27:1052-1062.
|
[10] |
Callewaert L, Michiels CW. Lysozymes in the animal kingdom J Biosci 2010;35:127-160.
|
[11] |
Caruso R, Warner N, Inohara N et al. NOD1 and NOD2:signaling, host defense, and inflammatory disease Immunity 2014;41:898-908.
|
[12] |
Cavallari JF, Fullerton MD, Duggan BM et al. Muramyl dipeptide-based postbiotics mitigate obesity-induced insulin resistance via IRF4 Cell Metab 2017;25:1063-1074.e3
|
[13] |
Cebra JJ. Influences of microbiota on intestinal immune system development Am J Clin Nutr 1999;69:1046S1046s-1046S1051S.
|
[14] |
Chamaillard M, Hashimoto M, Horie Y et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid Nat Immunol 2003;4:702-707.
|
[15] |
Chan KL, Tam TH, Boroumand P et al. Circulating NOD1 activators and hematopoietic NOD1 contribute to metabolic inflammation and insulin resistance Cell Rep 2017;18:2415-2426.
|
[16] |
Charroux B, Capo F, Kurz CL et al. Cytosolic and secreted peptidoglycan-degrading enzymes in drosophila respectively control local and systemic immune responses to microbiota Cell Host Microbe 2018;23:215-228.e4.
|
[17] |
Chatzidaki-Livanis M, Weinacht KG, Comstock LE. Trans locus inhibitors limit concomitant polysaccharide synthesis in the human gut symbiont Bacteroides fragilis Proc Natl Acad Sci USA 2010;107:11976-11980.
|
[18] |
Chen J, Xiao Y, Li D et al. New insights into the mechanisms of high-fat diet mediated gut microbiota in chronic diseases iMeta 2023;2:e69.
|
[19] |
Choi S-C, Brown J, Gong M et al. Gut microbiota dysbiosis and altered tryptophan catabolism contribute to autoimmunity in lupus-susceptible mice Sci Transl Med 2020;12:eaax2220.
|
[20] |
d'Hennezel E, Abubucker S, Murphy LO et al. Total lipopolysaccharide from the human gut microbiome silences toll-like receptor signaling mSystems 2017;2:e00046-e00017.
|
[21] |
Di Lorenzo F, De Castro C, Silipo A et al. Lipopolysaccharide structures of Gram-negative populations in the gut microbiota and effects on host interactions FEMS Microbiol Rev 2019;43:257-272.
|
[22] |
Di Lorenzo F, Pither MD, Martufi M et al. Pairing Bacteroides vulgatus LPS structure with its immunomodulatory effects on human cellular models ACS Cent Sci 2020;6:1602-1616.
|
[23] |
Durant L, Stentz R, Noble A et al. Bacteroides thetaiotaomicron-derived outer membrane vesicles promote regulatory dendritic cell responses in health but not in inflammatory bowel disease Microbiome 2020;8:88.
|
[24] |
Dvorožňáková E, Porubcová J, Šnábel V et al. Imunomodulative effect of liposomized muramyltripeptide phosphatidylethanolamine (L-MTP-PE) on mice with alveolar echinococcosis and treated with albendazole Parasitol Res 2008;103:919-929.
|
[25] |
Dworkin J. The medium is the message:interspecies and interkingdom signaling by peptidoglycan and related bacterial glycans Annu Rev Microbiol 2014;68:137-154.
|
[26] |
Egan AJF, Errington J, Vollmer W. Regulation of peptidoglycan synthesis and remodelling Nat Rev Microbiol 2020;18:446-460.
|
[27] |
Erturk-Hasdemir D, Oh SF, Okan NA et al. Symbionts exploit complex signaling to educate the immune system Proc Natl Acad Sci USA 2019;116:26157-26166.
|
[28] |
Fernandez EM, Valenti V, Rockel C et al. Anti-inflammatory capacity of selected Lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide Gut 2011;60:1050-1059.
|
[29] |
Friedrich AD, Campo VE, Cela EM et al. Oral administration of lipoteichoic acid from Lactobacillus rhamnosus GG overcomes UVB-induced immunosuppression and impairs skin tumor growth in mice Eur J Immunol 2019;49:2095-2102.
|
[30] |
Gabanyi I, Lepousez G, Wheeler R et al. Bacterial sensing via neuronal Nod2 regulates appetite and body temperature Science 2022;376:eabj3986.
|
[31] |
Gao J, Zhao X, Hu S et al. Gut microbial DL-endopeptidase alleviates Crohn's disease via the NOD2 pathway Cell Host Microbe 2022;30:1435-1449.e9.
|
[32] |
Geng S, Li Q, Zhou X et al. Gut commensal E. coli outer membrane proteins activate the host food digestive system through neural-immune communication Cell Host Microbe 2022;30:1401-1416.e8.
|
[33] |
Girardin SE, Boneca IG, Carneiro LAM et al. Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan Science 2003;300:1584-1587.
|
[34] |
Griffin ME, Espinosa J, Becker JL et al. Enterococcus peptidoglycan remodeling promotes checkpoint inhibitor cancer immunotherapy Science 2021;373:1040-1046.
|
[35] |
Heimesaat MM, Fischer A, Jahn H-K et al. Exacerbation of murine ileitis by Toll-like receptor 4 mediated sensing of lipopolysaccharide from commensal Escherichia coli Gut 2007;56:941-948.
|
[36] |
Hoffmann JA, Kafatos FC, Janeway CA et al. Phylogenetic perspectives in innate immunity Science 1999;284:1313-1318.
|
[37] |
Hou K, Wu Z-X, Chen X-Y et al. Microbiota in health and diseases Sig Transduct Target Ther 2022;7:135.
|
[38] |
Huang Z, Wang J, Xu X et al. Antibody neutralization of microbiota-derived circulating peptidoglycan dampens inflammation and ameliorates autoimmunity Nat Microbiol 2019;4:766-773.
|
[39] |
Ivanov II, McKenzie BS, Zhou L et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells Cell 2006;126:1121-1133.
|
[40] |
Ivanov II, Rosa de Frutos L, Manel N et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine Cell Host Microbe 2008;4:337-349.
|
[41] |
Jacobs JP, Goudarzi M, Singh N et al. A disease-associated microbial and metabolomics state in relatives of pediatric inflammatory bowel disease patients Cell Mol Gastroenterol Hepatol 2016;2:750-766.
|
[42] |
Jiang S, Chen D, Ma C et al. Establishing a novel inflammatory bowel disease prediction model based on gene markers identified from single nucleotide variants of the intestinal microbiota iMeta 2022;1.
|
[43] |
Kim B, Wang Y-C, Hespen CW et al. Enterococcus faecium secreted antigen A generates muropeptides to enhance host immunity and limit bacterial pathogenesis eLife 2019;8:e45343.
|
[44] |
Kojima N, Kojima S, Hosokawa S et al. Wall teichoic acid-dependent phagocytosis of intact cell walls of Lactiplantibacillus plantarum elicits IL-12 secretion from macrophages Front Microbiol 2022;13:986396.
|
[45] |
Krautkramer KA, Fan J, Bäckhed F. Gut microbial metabolites as multi-kingdom intermediates Nat Rev Microbiol 2021;19:77-94.
|
[46] |
Kurokawa K, Jung D-J, An J-H et al. Glycoepitopes of Staphylococcal wall teichoic acid govern complement-mediated opsonophagocytosis via human serum antibody and mannose-binding lectin J Biol Chem 2013;288:30956-30968.
|
[47] |
Lai H-C, Lin T-L, Chen T-W et al. Gut microbiota modulates COPD pathogenesis:role of anti-inflammatory Parabacteroides goldsteinii lipopolysaccharide Gut 2022;71:309-321.
|
[48] |
Li Y, Wang Y, Shi F et al. Phospholipid metabolites of the gut microbiota promote hypoxia-induced intestinal injury via CD1d-dependent γδ T cells Gut Microbes 2022;14:2096994.
|
[49] |
Lin D, Gao Y, Zhao L et al. Enterococcus faecalis lipoteichoic acid regulates macrophages autophagy via PI3K/Akt/mTOR pathway Biochem Biophys Res Commun 2018;498:1028-1036.
|
[50] |
Liu S, Zhao W, Lan P et al. The microbiome in inflammatory bowel diseases:from pathogenesis to therapy Protein Cell 2021;12:331-345.
|
[51] |
Maisonneuve C, Tsang DKL, Foerster EG et al. Nod1 promotes colorectal carcinogenesis by regulating the immunosuppressive functions of tumor-infiltrating myeloid cells Cell Rep 2021;34:108677.
|
[52] |
Mallott EK, Amato KR. Host specificity of the gut microbiome Nat Rev Microbiol 2021;19:639-653.
|
[53] |
Matsuzaki C, Shiraishi T, Chiou T-Y et al. Role of lipoteichoic acid from the genus Apilactobacillus in inducing a strong IgA response Appl Environ Microbiol 2022;88:e00190-e00122.
|
[54] |
Mondragón-Palomino O, Poceviciute R, Lignell A et al. Three-dimensional imaging for the quantification of spatial patterns in microbiota of the intestinal mucosa Proc Natl Acad Sci USA 2022;119:e2118483119.
|
[55] |
Monnot GC, Wegrecki M, Cheng T-Y et al. Staphylococcal phosphatidylglycerol antigens activate human T cells via CD1a Nat Immunol 2023;24:110-122.
|
[56] |
Nenci A, Becker C, Wullaert A et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation Nature 2007;446:557-561.
|
[57] |
Nigro G, Rossi R, Commere P-H et al. The cytosolic bacterial peptidoglycan sensor Nod2 affords stem cell protection and links microbes to gut epithelial regeneration Cell Host Microbe 2014;15:792-798.
|
[58] |
Ohya Y, Nishimoto T, Ouchi T. Design of d-glucose analogue of MDP/CM-curdlan conjugate and its immunological enhancement activity Carbohydr Polym 1993;20:43-49.
|
[59] |
Palm NW, Medzhitov R. Pattern recognition receptors and control of adaptive immunity Immunol Rev 2009;227:221-233.
|
[60] |
Pan Q, Guo F, Huang Y et al. Gut microbiota dysbiosis in systemic lupus erythematosus:novel insights into mechanisms and promising therapeutic strategies Front Immunol 2021;12:799788.
|
[61] |
Pedicord VA, Lockhart AAK, Rangan KJ et al. Exploiting a host-commensal interaction to promote intestinal barrier function and enteric pathogen tolerance Sci Immunol 2016;1.
|
[62] |
Plovier H, Everard A, Druart C et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice Nat Med 2017;23:107-113.
|
[63] |
Ramakrishna C, Kujawski M, Chu H et al. Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis Nat Commun 2019;10:2153.
|
[64] |
Rangan KJ, Pedicord VA, Wang Y-C et al. A secreted bacterial peptidoglycan hydrolase enhances tolerance to enteric pathogens Science 2016;353:1434-1437.
|
[65] |
Rathinam VAK, Zhao Y, Shao F. Innate immunity to intracellular LPS Nat Immunol 2019;20:527-533.
|
[66] |
Riehl TE, Alvarado D, Ee X et al. Lactobacillus rhamnosus GG protects the intestinal epithelium from radiation injury through release of lipoteichoic acid, macrophage activation and the migration of mesenchymal stem cells Gut 2019;68:1003-1013.
|
[67] |
Schroeder BO, Bäckhed F. Signals from the gut microbiota to distant organs in physiology and disease Nat Med 2016;22:1079-1089.
|
[68] |
Schwarzer M, Gautam UK, Makki K et al. Microbe-mediated intestinal NOD2 stimulation improves linear growth of undernourished infant mice Science 2023;379:826-833.
|
[69] |
Shahine A, Reinink P, Reijneveld JF et al. A T-cell receptor escape channel allows broad T-cell response to CD1b and membrane phospholipids Nat Commun 2019;10:56.
|
[70] |
Shida K, Kiyoshima-Shibata J, Kaji R et al. Peptidoglycan from Lactobacilli inhibits interleukin-12 production by macrophages induced by Lactobacillus casei through Toll-like receptor 2-dependent and independent mechanisms Immunology 2009;128:e858-e869.
|
[71] |
Shiraishi T, Yokota S, Fukiya S et al. Structural diversity and biological significance of lipoteichoic acid in Gram-positive bacteria:focusing on beneficial probiotic lactic acid bacteria Biosci Microbiota Food Health 2016;35:147-161.
|
[72] |
Smith, PM, Howitt, MR, Panikov, N et al. The microbial metabolites, short-chain fatty acids, regulate colonic T reg cell homeostasis Science 2013;341:569-573.
|
[73] |
Spindler MP, Siu S, Mogno I et al. Human gut microbiota stimulate defined innate immune responses that vary from phylum to strain Cell Host Microbe 2022;30:1481-1498.e5.
|
[74] |
Stafford CA, Gassauer A-M, de Oliveira Mann CC et al. Phosphorylation of muramyl peptides by NAGK is required for NOD2 activation Nature 2022;609:590-596.
|
[75] |
Steimle A, Michaelis L, Di Lorenzo F et al. Weak agonistic LPS restores intestinal immune homeostasis Mol Ther 2019;27:1974-1991.
|
[76] |
Sun D, Bai R, Zhou W et al. Angiogenin maintains gut microbe homeostasis by balancing α-Proteobacteria and Lachnospiraceae Gut 2021;70:666-676.
|
[77] |
Sun H, Guo Y, Wang H et al. Gut commensal Parabacteroides distasonis alleviates inflammatory arthritis Gut 2023;2022:327756.
|
[78] |
Tei R, Baskin JM. Click chemistry and optogenetic approaches to visualize and manipulate phosphatidic acid signaling J Biol Chem 2022;298:101810.
|
[79] |
Teng F, Klinger CN, Felix KM et al. Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of peyer's patch T follicular helper cells Immunity 2016;44:875-888.
|
[80] |
Tian D, Han M Bacterial peptidoglycan muropeptides benefit mitochondrial homeostasis and animal physiology by acting as ATP synthase agonists Develop Cell 2022;57:361-372.e5.
|
[81] |
Typas A, Banzhaf M, Gross CA et al. From the regulation of peptidoglycan synthesis to bacterial growth and morphology Nat Rev Microbiol 2012;10:123-136.
|
[82] |
Van Rhijn I, van Berlo T, Hilmenyuk T et al. Human autoreactive T cells recognize CD1b and phospholipids Proc Natl Acad Sci USA 2016;113:380-385.
|
[83] |
Vollmer W, Blanot D, De Pedro MA. Peptidoglycan structure and architecture FEMS Microbiol Rev 2008a;32:149-167.
|
[84] |
Vollmer W, Joris B, Charlier P et al. Bacterial peptidoglycan (murein) hydrolases FEMS Microbiol Rev 2008b;32:259-286.
|
[85] |
de Vos WM, Tilg H, Van Hul M et al. Gut microbiome and health:mechanistic insights Gut 2022;71:1020-1032.
|
[86] |
Wang S, Heng BC, Qiu S et al. Lipoteichoic acid of Enterococcus faecalis inhibits osteoclastogenesis via transcription factor RBP-J Innate Immun 2019;25:13-21.
|
[87] |
Wang L, Tang L, Feng Y et al. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8 + T cells in mice Gut 2020a;69:1988-1997.
|
[88] |
Wang S, Ahmadi S, Nagpal R et al. Lipoteichoic acid from the cell wall of a heat killed Lactobacillus paracasei D3-5 ameliorates aging-related leaky gut, inflammation and improves physical and cognitive functions:from C. elegans to mice GeroScience 2020b;42:333-352.
|
[89] |
Wang W, Yang Q, Du Y et al. Metabolic labeling of peptidoglycan with NIR-II Dye enables in vivo imaging of gut microbiota Angew Chem Int Ed 2020c;59:2628-2633.
|
[90] |
Weaver CT, Elson CO, Fouser LA et al. The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin Annu Rev Pathol Mech Dis 2013;8:477477512.
|
[91] |
Whitney JC, Peterson SB, Kim J et al. A broadly distributed toxin family mediates contact-dependent antagonism between Gram-positive bacteria eLife 2017;6:e26938.
|
[92] |
Willis LM, Stupak J, Richards MR et al. Conserved glycolipid termini in capsular polysaccharides synthesized by ATP-binding cassette transporter-dependent pathways in Gram-negative pathogens Proc Natl Acad Sci USA 2013;110:7868-7873.
|
[93] |
Wolf AJ, Reyes CN, Liang W et al. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan Cell 2016;166:624-636.
|
[94] |
Wu J, Wang K, Wang X et al. The role of the gut microbiome and its metabolites in metabolic diseases Protein Cell 2021;12:360-373.
|
[95] |
Yang W, Cong Y. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases Cell Mol Immunol 2021;18:866-877.
|
[96] |
Yu J, Xiao K, Chen X et al. Neuron-derived neuropeptide Y fine-tunes the splenic immune responses Neuron 2022;110:1327-1339.e6.
|
[97] |
Zhang H, Liao X, Sparks JB et al. Dynamics of gut microbiota in autoimmune lupus Appl Environ Microbiol 2014;80:7551-7560.
|
[98] |
Zou Y, Xue W, Luo G et al. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses Nat Biotechnol 2019;37:179-185.
|
This is a modal window.
This is a modal window.