Citation: | Lei Chang, Mengfan Li, Shipeng Shao, Chen Li, Shanshan Ai, Boxin Xue, Yingping Hou, Yiwen Zhang, Ruifeng Li, Xiaoying Fan, Aibin He, Cheng Li, Yujie Sun. Nuclear peripheral chromatin-lamin B1 interaction is required for global integrity of chromatin architecture and dynamics in human cells[J]. Protein&Cell, 2022, 13(4): 258-280. doi: 10.1007/s13238-020-00794-8 |
[1] |
Ai S, Peng Y, Li C, Gu F, Yu X, Yue Y, Ma Q, Chen J, Lin Z, Zhou P et al (2017) EED orchestration of heart maturation through interaction with HDACs is H3K27me3-independent. eLife 6:e24570
|
[2] |
Akhtar J, More P, Albrecht S, Marini F, Kaiser W, Kulkarni A, Wojnowski L, Fontaine J-F, Andrade-Navarro MA, Silies M et al (2019) TAF-ChIP:an ultra-low input approach for genome-wide chromatin immunoprecipitation assay. Life science alliance 2:e201900318
|
[3] |
Albert B, Mathon J, Shukla A, Saad H, Normand C, Leger-Silvestre I, Villa D, Kamgoue A, Mozziconacci J, Wong H et al (2013) Systematic characterization of the conformation and dynamics of budding yeast chromosome XII. J Cell Biol 202:201-210
|
[4] |
Amendola M, Steensel BV (2015) Nuclear lamins are not required for lamina-associated domain organization in mouse embryonic stem cells. EMBO Rep 16:610-617
|
[5] |
Barton LJ, Soshnev AA, Geyer PK (2015) Networking in the nucleus:a spotlight on LEM-domain proteins. Curr Opin Cell Biol 34:1-8
|
[6] |
Bintu B, Mateo LJ, Su J-H, Sinnott-Armstrong NA, Parker M, Kinrot S, Yamaya K, Boettiger AN, Zhuang X (2018) Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362:eaau1783
|
[7] |
Boettiger AN, Bintu B, Moffitt JR, Wang S, Beliveau BJ, Fudenberg G, Imakaev M, Mirny LA, Wu CT, Zhuang X (2016) Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529:418-422
|
[8] |
Brakemann T, Stiel AC, Weber G, Andresen M, Testa I, Grotjohann T, Leutenegger M, Plessmann U, Urlaub H, Eggeling C et al (2011) A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nat Biotechnol 29:942-947
|
[9] |
Briand N, Collas P (2018) Laminopathy-causing lamin A mutations reconfigure lamina-associated domains and local spatial chromatin conformation. Nucleus 9:216-226
|
[10] |
Briand N, Collas P (2020) Lamina-associated domains:peripheral matters and internal affairs. Genome Biol 21:85-85
|
[11] |
Bronshtein I, Kepten E, Kanter I, Berezin S, Lindner M, Redwood AB, Mai S, Gonzalo S, Foisner R, Shav-Tal Y et al (2015) Loss of lamin A function increases chromatin dynamics in the nuclear interior. Nat Commun 6:8044
|
[12] |
Camps J, Wangsa D, Falke M, Brown M, Case CM, Erdos MR, Ried T (2014) Loss of lamin B1 results in prolongation of S phase and decondensation of chromosome territories. FASEB J 28:3423-3434
|
[13] |
Cho NW, Dilley RL, Lampson MA, Greenberg RA (2014) Interchromosomal homology searches drive directional ALT telomere movement and synapsis. Cell 159:108-121
|
[14] |
Chuang CH, Carpenter AE, Fuchsova B, Johnson T, de Lanerolle P, Belmont AS (2006) Long-range directional movement of an interphase chromosome site. Curr Biol 16:825-831
|
[15] |
Chubb JR, Boyle S, Perry P, Bickmore WA (2002) Chromatin motion is constrained by association with nuclear compartments in human cells. Curr Biol 12:439-445
|
[16] |
Crane E, Bian Q, McCord RP, Lajoie BR, Wheeler BS, Ralston EJ, Uzawa S, Dekker J, Meyer BJ (2015) Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523:240-244
|
[17] |
Cremer M, Küpper K, Wagler B, Wizelman L, Hase JV, Weiland Y, Kreja L, Diebold J, Speicher MR, Cremer T (2003) Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J Cell Biol 162:809-820
|
[18] |
Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145:1119-1131
|
[19] |
Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295:1306-1311
|
[20] |
Dimitrova N, Chen Y-CM, Spector DL, de Lange T (2008) 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature 456:524-528
|
[21] |
Dixon CR, Platani M, Makarov AA, Schirmer EC (2017) Microinjection of antibodies targeting the lamin A/C histone-binding site blocks mitotic entry and reveals separate chromatin interactions with HP1, CenpB and PML. Cells 6:9
|
[22] |
Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376-380
|
[23] |
Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA, Rubio ED, Krumm A, Lamb J, Nusbaum C et al (2006) Chromosome Conformation Capture Carbon Copy (5C):a massively parallel solution for mapping interactions between genomic elements. Genome Res 16:1299-1309
|
[24] |
Du Z, Zheng H, Huang B, Ma R, Wu J, Zhang X, He J, Xiang Y, Wang Q, Li Y et al (2017) Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547:232-235
|
[25] |
Falk M, Feodorova Y, Naumova N, Imakaev M, Lajoie BR, Leonhardt H, Joffe B, Dekker J, Fudenberg G, Solovei I et al (2019) Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature 570:395-399
|
[26] |
Fan H, Lv P, Huo X, Wu J, Wang Q, Cheng L, Liu Y, Tang QQ, Zhang L, Zhang F et al (2018) The nuclear matrix protein HNRNPU maintains 3D genome architecture globally in mouse hepatocytes. Genome Res 28:192-202
|
[27] |
Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, Orlov YL, Velkov S, Ho A, Mei PH et al (2009) An oestrogen-receptor-α-bound human chromatin interactome. Nature 462:58-64
|
[28] |
Gesson K, Rescheneder P, Skoruppa MP, von Haeseler A, Dechat T, Foisner R (2016) A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2 alpha. Genome Res 26:462-473
|
[29] |
Goto C, Tamura K, Fukao Y, Shimada T, Hara-Nishimura I (2014) The novel nuclear envelope protein KAKU4 modulates nuclear morphology in arabidopsis. Plant Cell 26:2143-2155
|
[30] |
Gruenbaum Y, Foisner R (2015) Lamins:nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem 84:131-164
|
[31] |
Gu B, Swigut T, Spencley A, Bauer MR, Chung M, Meyer T, Wysocka J (2018) Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science 359:1050-1055
|
[32] |
Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W, Eussen BH, de Klein A, Wessels L, de Laat W et al (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948-951
|
[33] |
Haarhuis JHI, van der Weide RH, Blomen VA, Yanez-Cuna JO, Amendola M, van Ruiten MS, Krijger PHL, Teunissen H, Medema RH, Steensel BV et al (2017) The cohesin release factor WAPL restricts chromatin loop extension. Cell 169(693-707):e614
|
[34] |
Hajjoul H, Mathon J, Ranchon H, Goiffon I, Mozziconacci J, Albert B, Carrivain P, Victor JM, Gadal O, Bystricky K et al (2013) High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome. Genome Res 23:1829-1838
|
[35] |
Ho CY, Lammerding J (2012) Lamins at a glance. J Cell Sci 125:2087-2093
|
[36] |
Hu B, Wang N, Bi X, Karaaslan ES, Weber A-L, Zhu W, Berendzen KW, Liu C (2019) Plant lamin-like proteins mediate chromatin tethering at the nuclear periphery. Genome Biol 20:87
|
[37] |
Hubner MR, Spector DL (2010) Chromatin dynamics. Annu Rev Biophys 39:471-489
|
[38] |
Huo X, Ji L, Zhang Y, Lv P, Cao X, Wang Q, Yan Z, Dong S, Du D, Zhang F et al (2020) The nuclear matrix protein SAFB cooperates with major satellite RNAs to stabilize heterochromatin architecture partially through phase separation. Mol Cell 77:368-383
|
[39] |
Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A, Lajoie BR, Dekker J, Mirny LA (2012) Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat Methods 9:999-1003
|
[40] |
Izumi M, Vaughan OA, Hutchison CJ, Gilbert DM (2000) Head and/or CaaX domain deletions of lamin proteins disrupt preformed lamin A and C but not lamin B structure in mammalian cells. Mol Biol Cell 11:4323-4337
|
[41] |
Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid SL, Danuser G (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5:695-702
|
[42] |
Javer A, Long Z, Nugent E, Grisi M, Siriwatwetchakul K, Dorfman KD, Cicuta P, Cosentino-Lagomarsino M (2013) Short-time movement of E. coli chromosomal loci depends on coordinate and subcellular localization. Nat Commun 4:3003
|
[43] |
Ji L, Huo X, Zhang Y, Yan Z, Wang Q, Wen B (2020) TOPORS, a tumor suppressor protein, contributes to the maintenance of higher-order chromatin architecture. Biochim Biophys Acta 1863:194518
|
[44] |
Kim D, Langmead B, Salzberg SL (2015) HISAT:a fast spliced aligner with low memory requirements. Nat Methods 12:357-360
|
[45] |
Kim KD, Tanizawa H, Iwasaki O, Corcoran CJ, Capizzi JR, Hayden JE, Noma K (2013) Centromeric motion facilitates the mobility of interphase genomic regions in fission yeast. J Cell Sci 126:5271-5283
|
[46] |
Kind J, Pagie L, de Vries SS, Nahidiazar L, Dey SS, Bienko M, Zhan Y, Lajoie B, de Graaf CA, Amendola M et al (2015) Genome-wide maps of nuclear lamina interactions in single human cells. Cell 163:134-147
|
[47] |
Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries SS, Janssen H, Amendola M, Nolen LD, Bickmore WA, Steensel BV (2013) Single-cell dynamics of genome-nuclear lamina interactions. Cell 153:178-192
|
[48] |
Kind J, Steensel BV (2014) Stochastic genome-nuclear lamina interactions:modulating roles of Lamin A and BAF. Nucleus 5:124-130
|
[49] |
Korfali N, Wilkie GS, Swanson SK, Srsen V, Heras JDL, Batrakou DG, Malik P, Zuleger N, Kerr ARW, Florens L et al (2012) The nuclear envelope proteome differs notably between tissues. Nucleus 3:552-564
|
[50] |
Krishan A (1975) Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol 66:188-193
|
[51] |
Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A et al (2016) Enrichr:a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44:W90
|
[52] |
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357-359
|
[53] |
Lawrence MF, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R, Morgan MT, Carey VJ (2013) Software for computing and annotating genomic ranges. PLoS Comput Biol 9:e1003118
|
[54] |
Lerner J, Gomez-Garcia PA, McCarthy RL, Liu Z, Lakadamyali M, Zaret KS (2020) Two-parameter mobility assessments discriminate diverse regulatory factor behaviors in chromatin. Mol Cell 79:677
|
[55] |
Li M, Gan J, Sun Y, Xu Z, Yang J, Sun Y, Li C (2020) Architectural proteins for the formation and maintenance of the 3D genome. Sci China Life Sci 63:795-810
|
[56] |
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289-293
|
[57] |
Liu L, Shi G, Thirumalai D, Hyeon C (2018) Chain organization of human interphase chromosome determines the spatiotemporal dynamics of chromatin loci. PLoS Comput Biol 14:e1006617
|
[58] |
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550-550
|
[59] |
Lund E, Oldenburg AR, Collas P (2014) Enriched domain detector:a program for detection of wide genomic enrichment domains robust against local variations. Nucleic Acids Res 42:e92
|
[60] |
Luo YB, Mastaglia FL, Wilton SD (2014) Normal and aberrant splicing of LMNA. J Med Genet 51:215-223
|
[61] |
Luperchio TR, Sauria ME, Wong X, Gaillard M-C, Tsang P, Pekrun K, Ach RA, Yamada NA, Taylor J, Reddy K (2017) Chromosome conformation paints reveal the role of lamina association in genome organization and regulation. bioRxiv
|
[62] |
Ma H, Naseri A, Reyes-Gutierrez P, Wolfe SA, Zhang S, Pederson T (2015) Multicolor CRISPR labeling of chromosomal loci in human cells. Proc Natl Acad Sci USA 112:3002-3007
|
[63] |
Maass PG, Barutcu AR, Weiner CL, Rinn JL (2018) Inter-chromosomal contact properties in live-cell imaging and in Hi-C. Mol Cell 69:1039-1045
|
[64] |
Meuleman W, Peric-Hupkes D, Kind J, Beaudry J-B, Pagie L, Kellis M, Reinders M, Wessels L, Steensel BV (2013) Constitutive nuclear lamina-genome interactions are highly conserved and associated with A/T-rich sequence. Genome Res 23:270-280
|
[65] |
Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED, Tanay A, Fraser P (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502:59-64
|
[66] |
Nora EP, Goloborodko A, Valton AL, Gibcus JH, Uebersohn A, Abdennur N, Dekker J, Mirny LA, Bruneau BG (2017) Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169:930-944
|
[67] |
Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J et al (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485:381-385
|
[68] |
Nozaki T, Imai R, Tanbo M, Nagashima R, Tamura S, Tani T, Joti Y, Tomita M, Hibino K, Kanemaki MT et al (2017) Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging. Mol Cell 67:282-293
|
[69] |
Nuebler J, Fudenberg G, Imakaev M, Abdennur N, Mirny LA (2018) Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc Natl Acad Sci USA 115:E6697-E6706
|
[70] |
Ochiai H, Sugawara T, Yamamoto T (2015) Simultaneous live imaging of the transcription and nuclear position of specific genes. Nucleic Acids Res 43:e127
|
[71] |
Pierro MD, Potoyan DA, Wolynes PG, Onuchic JN (2018) Anomalous diffusion, spatial coherence, and viscoelasticity from the energy landscape of human chromosomes. Proc Natl Acad Sci USA 115:7753-7758
|
[72] |
Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665-1680
|
[73] |
Rao SSP, Huang SC, Glenn St Hilaire B, Engreitz JM, Perez EM, Kieffer-Kwon KR, Sanborn AL, Johnstone SE, Bascom GD, Bochkov ID et al (2017) Cohesin loss eliminates all loop domains. Cell 171:305-320
|
[74] |
Ricci MA, Manzo C, Garcia-Parajo MF, Lakadamyali M, Cosma MP (2015) Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160:1145-1158
|
[75] |
Ruan J, Xu C, Bian C, Lam R, Wang JP, Kania J, Min J, Zang J (2012) Crystal structures of the coil 2B fragment and the globular tail domain of human lamin B1. FEBS Lett 586:314-318
|
[76] |
Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793-795
|
[77] |
Sawh AN, Shafer MER, Su J-H, Zhuang X, Wang S, Mango SE (2020) Lamina-dependent stretching and unconventional chromosome compartments in early C. elegans embryos. Mol Cell 78:96-111
|
[78] |
Schirmer EC, Guan T, Gerace L (2001) Involvement of the lamin rod domain in heterotypic lamin interactions important for nuclear organization. J Cell Biol 153:479-490
|
[79] |
Schwarzer W, Abdennur N, Goloborodko A, Pekowska A, Fudenberg G, Loe-Mie Y, Fonseca NA, Huber W, Haering CH, Mirny L et al (2017) Two independent modes of chromatin organization revealed by cohesin removal. Nature 551:51-56
|
[80] |
Servant N, Lajoie BR, Nora EP, Giorgetti L, Chen CJ, Heard E, Dekker J, Barillot E (2012) HiTC:exploration of high-throughput ‘C’ experiments. Bioinformatics 28:2843-2844
|
[81] |
Servant N, Varoquaux N, Lajoie BR, Viara E, Chen C-J, Vert J-P, Heard E, Dekker J, Barillot E (2015) HiC-Pro:an optimized and flexible pipeline for Hi-C data processing. Genome Biol 16:259
|
[82] |
Shao S, Xue B, Sun Y (2018) Intranucleus single-molecule imaging in living cells. Biophys J 115:181-189
|
[83] |
Shimi T, Pfleghaar K, Kojima S, Pack CG, Solovei I, Goldman AE, Adam SA, Shumaker DK, Kinjo M, Cremer T et al (2008) The A- and B-type nuclear lamin networks:microdomains involved in chromatin organization and transcription. Genes Dev 22:3409-3421
|
[84] |
Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, Steensel BV, de Laat W (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38:1348-1354
|
[85] |
Solovei I, Thanisch K, Feodorova Y (2016) How to rule the nucleus:divide et impera. Curr Opin Cell Biol 40:47-59
|
[86] |
Solovei I, Wang AS, Thanisch K, Schmidt CS, Krebs S, Zwerger M, Cohen TV, Devys D, Foisner R, Peichl L et al (2013) LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152:584-598
|
[87] |
Steensel BV, Belmont AS (2017) Lamina-associated domains:links with chromosome architecture, heterochromatin, and gene repression. Cell 169:780-791
|
[88] |
Sun HB, Shen J, Yokota H (2000) Size-dependent positioning of human chromosomes in interphase nuclei. Biophys J 79:184-190
|
[89] |
Tajik A, Zhang Y, Wei F, Sun J, Jia Q, Zhou W, Singh R, Khanna N, Belmont AS, Wang N (2016) Transcription upregulation via force-induced direct stretching of chromatin. Nat Mater 15:1287-1296
|
[90] |
Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635-646
|
[91] |
Towbin BD, González-Aguilera C, Sack R, Gaidatzis D, Kalck V, Meister P, Askjaer P, Gasser SM (2012) Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 150:934-947
|
[92] |
Ulianov SV, Doronin SA, Khrameeva EE, Kos PI, Luzhin AV, Starikov SS, Galitsyna AA, Nenasheva VV, Ilyin AA, Flyamer IM et al (2019) Nuclear lamina integrity is required for proper spatial organization of chromatin in Drosophila. Nat Commun 10:1176
|
[93] |
Verboon JM, Rincon-Arano H, Werwie TR, Delrow JJ, Scalzo D, Nandakumar V, Groudine M, Parkhurst SM (2015) Wash interacts with lamin and affects global nuclear organization. Curr Biol 25:804-810
|
[94] |
Verdaasdonk JS, Vasquez PA, Barry RM, Barry T, Goodwin S, Forest MG, Bloom K (2013) Centromere tethering confines chromosome domains. Mol Cell 52:819-831
|
[95] |
Viollier PH, Thanbichler M, McGrath PT, West L, Meewan M, McAdams HH, Shapiro L (2004) Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc Natl Acad Sci USA 101:9257-9262
|
[96] |
Vivante A, Brozgol E, Bronshtein I, Levi V, Garini Y (2018) Chromatin dynamics governed by a set of nuclear structural proteins. Genes Chromos Cancer 58:437
|
[97] |
Wagner N, Krohne G (2007) LEM-domain proteins:new insights into lamin-interacting proteins. Int Rev Cytol Surv Cell Biol 261:1-46
|
[98] |
Wang S, Su JH, Beliveau BJ, Bintu B, Moffitt JR, Wu CT, Zhuang X (2016) Spatial organization of chromatin domains and compartments in single chromosomes. Science 353:598-602
|
[99] |
Wutz G, Várnai C, Nagasaka K, Cisneros DA, Stocsits RR, Tang W, Schoenfelder S, Jessberger G, Muhar M, Hossain MJ et al (2017) Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J 36:3573-3599
|
[100] |
Zheng X, Hu J, Yue S, Kristiani L, Kim M, Sauria M, Taylor J, Kim Y, Zheng Y (2018) Lamins organize the global three-dimensional genome from the nuclear periphery. Mol Cell 71:802-815
|
[101] |
Zidovska A, Weitz DA, Mitchison TJ (2013) Micron-scale coherence in interphase chromatin dynamics. Proc Natl Acad Sci USA 110:15555-15560
|
[102] |
Zwerger M, Roschitzki-Voser H, Zbinden R, Denais C, Herrmann H, Lammerding J, Grütter MG, Medalia O (2015) Altering lamina assembly reveals lamina-dependent and -independent functions for A-type lamins. J Cell Sci 128:3607-3620
|
1. | Jinmei Cheng, Yimin Gu, Yueming Wang, et al. Fam170a deficiency causes male infertility by impairing histone-to-protamine exchange during mouse spermiogenesis. Nucleic Acids Research, 2025, 53(3) DOI:10.1093/nar/gkaf023 |
2. | Francesca Paganelli, Alessandro Poli, Serena Truocchio, et al. At the nucleus of cancer: how the nuclear envelope controls tumor progression. MedComm, 2025, 6(2) DOI:10.1002/mco2.70073 |
3. | Rania Znaidi, Olivia Massiani-Beaudoin, Philippe Mailly, et al. Nuclear translocation of the LINE-1 encoded ORF1 protein alters nuclear envelope integrity in human neurons. Brain Research, 2025, 1857: 149579. DOI:10.1016/j.brainres.2025.149579 |
4. | Chang Sun, Yanjing Zhao, Liping Guo, et al. The interplay between histone modifications and nuclear lamina in genome regulation. Journal of Genetics and Genomics, 2025, 52(1): 24. DOI:10.1016/j.jgg.2024.10.005 |
5. | Ekaterina Momotyuk, Nour Ebrahim, Ksenia Shakirova, et al. Role of the cytoskeleton in cellular reprogramming: effects of biophysical and biochemical factors. Frontiers in Molecular Biosciences, 2025, 12 DOI:10.3389/fmolb.2025.1538806 |
6. | Dute Gao, Huahu Guo, Zhaochen Liu, et al. LMNB1/CDKN1A Signaling Regulates the Cell Cycle and Promotes Hepatocellular Carcinoma Progression. Current Cancer Drug Targets, 2025, 25(6): 620. DOI:10.2174/0115680096299107240427073527 |
7. | Baihui Wang, Qiang Luo, Ohad Medalia. Lamins and chromatin join forces. Advances in Biological Regulation, 2025, 95: 101059. DOI:10.1016/j.jbior.2024.101059 |
8. | Geun-Seup Shin, Ah-Ra Jo, Jinho Kim, et al. Lamin B1 regulates RNA splicing factor expression by modulating the spatial positioning and chromatin interactions of the ETS1 gene locus. Animal Cells and Systems, 2025, 29(1): 149. DOI:10.1080/19768354.2025.2465325 |
9. | Tiange Lu, Juan Yang, Yiqing Cai, et al. NCAPD3 promotes diffuse large B-cell lymphoma progression through modulating SIRT1 expression in an H3K9 monomethylation-dependent manner. Journal of Advanced Research, 2025, 68: 163. DOI:10.1016/j.jare.2024.02.024 |
10. | Leiyan Chen, Zhenquan Zhang, Zihao Wang, et al. Barrier effects on the kinetics of cohesin-mediated loop extrusion. Biophysical Journal, 2025. DOI:10.1016/j.bpj.2025.03.026 |
11. | Emily M. Pujadas Liwag, Nicolas Acosta, Luay Matthew Almassalha, et al. Nuclear blebs are associated with destabilized chromatin-packing domains. Journal of Cell Science, 2025, 138(3) DOI:10.1242/jcs.262161 |
12. | Yan Lv, Weishu Dai, Huijing Zhang, et al. Substrate topography-induced osteogenesis of bone marrow stem cells by reducing the chromatin accessibility of YBX1. Acta Biochimica et Biophysica Sinica, 2025. DOI:10.3724/abbs.2025065 |
13. | Miki Yamamoto-Hino, Masaru Ariura, Masahito Tanaka, et al. PIGB maintains nuclear lamina organization in skeletal muscle of Drosophila. Journal of Cell Biology, 2024, 223(2) DOI:10.1083/jcb.202301062 |
14. | Pavlo Lazarchuk, Matthew Manh Nguyen, Crina M. Curca, et al. Werner syndrome RECQ helicase participates in and directs maintenance of the protein complexes of constitutive heterochromatin in proliferating human cells. Aging, 2024. DOI:10.18632/aging.206132 |
15. | Jagdish Mishra, Subhajit Chakraborty, Niharika, et al. Mechanotransduction and epigenetic modulations of chromatin: Role of mechanical signals in gene regulation. Journal of Cellular Biochemistry, 2024, 125(3) DOI:10.1002/jcb.30531 |
16. | Rebecca K. Stephens, Yekaterina A. Miroshnikova. Nuclear periphery and its mechanical regulation in cell fate transitions. Current Opinion in Structural Biology, 2024, 87: 102867. DOI:10.1016/j.sbi.2024.102867 |
17. | Kristina Keuper, Jiri Bartek, Apolinar Maya-Mendoza. The nexus of nuclear envelope dynamics, circular economy and cancer cell pathophysiology. European Journal of Cell Biology, 2024, 103(2): 151394. DOI:10.1016/j.ejcb.2024.151394 |
18. | D. del Rosario-Gilabert, A. Valenzuela-Miralles, G. Esquiva. Advances in mechanotransduction and sonobiology: effects of audible acoustic waves and low-vibration stimulations on mammalian cells. Biophysical Reviews, 2024, 16(6): 783. DOI:10.1007/s12551-024-01242-1 |
19. | Heng Li, Christopher Playter, Priyojit Das, et al. Chromosome compartmentalization: causes, changes, consequences, and conundrums. Trends in Cell Biology, 2024, 34(9): 707. DOI:10.1016/j.tcb.2024.01.009 |
20. | Ozan S. Sarıyer, Aykut Erbaş. Polymer physics view of peripheral chromatin: de Gennes' self-similar carpet. Physical Review E, 2024, 109(5) DOI:10.1103/PhysRevE.109.054403 |
21. | Chunmei Yin, Yuanda Wang, Pan Wang, et al. The N-terminal coiled-coil domain of Arabidopsis CROWDED NUCLEI 1 is required for nuclear morphology maintenance. Planta, 2024, 260(3) DOI:10.1007/s00425-024-04489-w |
22. | Mai Pho, Yasmin Berrada, Aachal Gunda, et al. Actin contraction controls nuclear blebbing and rupture independent of actin confinement. Molecular Biology of the Cell, 2024, 35(2) DOI:10.1091/mbc.E23-07-0292 |
23. | Rafal Czapiewski, Eric C Schirmer. Enhancers on the edge — how the nuclear envelope controls gene regulatory elements. Current Opinion in Genetics & Development, 2024, 87: 102234. DOI:10.1016/j.gde.2024.102234 |
24. | Charlotte Klein, Imke Ramminger, Shuoqiu Bai, et al. Impairment of Intermediate Filament Expression Reveals Impact on Cell Functions Independent from Keratinocyte Transformation. Cells, 2024, 13(23): 1960. DOI:10.3390/cells13231960 |
25. | Zhenyu Yang, Xianglong Liu, Xiaoliang Li, et al. The destruction of cytoplasmic skeleton leads to the change of nuclear structure and the looseness of lamin A submicroscopic network. Heliyon, 2024, 10(18): e36583. DOI:10.1016/j.heliyon.2024.e36583 |
26. | David del Rosario-Gilabert, Jesús Carbajo, Antonio Valenzuela-Miralles, et al. Exploring the Effects of Gratitude Voice Waves on Cellular Behavior: A Pilot Study in Affective Mechanotransduction. Applied Sciences, 2024, 14(20): 9400. DOI:10.3390/app14209400 |
27. | Monica Salinas-Pena, Elena Rebollo, Albert Jordan. Imaging analysis of six human histone H1 variants reveals universal enrichment of H1.2, H1.3, and H1.5 at the nuclear periphery and nucleolar H1X presence. eLife, 2024, 12 DOI:10.7554/eLife.91306.3 |
28. | Emily M. Pujadas Liwag, Xiaolong Wei, Nicolas Acosta, et al. Depletion of lamins B1 and B2 promotes chromatin mobility and induces differential gene expression by a mesoscale-motion-dependent mechanism. Genome Biology, 2024, 25(1) DOI:10.1186/s13059-024-03212-y |
29. | Kaixiang Gao, Yafan Xie, Fangning Xu, et al. Silk fibroin promotes H3K9me3 expression and chromatin reorganization to regulate endothelial cell proliferation. APL Bioengineering, 2024, 8(2) DOI:10.1063/5.0203858 |
30. | Yu. R. Akhmadullina, P. O. Khomenko. The role of micronuclei in chromatin elimination. Žurnal obŝej biologii, 2024, 85(4): 284. DOI:10.31857/S0044459624040026 |
31. | Ting Li, Kexin Yang, Wei Gao, et al. Cellular senescence in acute kidney injury: Target and opportunity. Biochemical and Biophysical Research Communications, 2024, 706: 149744. DOI:10.1016/j.bbrc.2024.149744 |
32. | Xindong Chen, Shihao Xu, Bizhu Chu, et al. Applying Spatiotemporal Modeling of Cell Dynamics to Accelerate Drug Development. ACS Nano, 2024, 18(43): 29311. DOI:10.1021/acsnano.4c12599 |
33. | Monica Salinas-Pena, Elena Rebollo, Albert Jordan. Imaging analysis of six human histone H1 variants reveals universal enrichment of H1.2, H1.3, and H1.5 at the nuclear periphery and nucleolar H1X presence. eLife, 2024, 12 DOI:10.7554/eLife.91306 |
34. | Francesca Donnaloja, Emma Limonta, Christian Mancosu, et al. Unravelling the mechanotransduction pathways in Alzheimer’s disease. Journal of Biological Engineering, 2023, 17(1) DOI:10.1186/s13036-023-00336-w |
35. | Jeanae M. Kaneshiro, Juliana S. Capitanio, Martin W. Hetzer. Lamin B1 overexpression alters chromatin organization and gene expression. Nucleus, 2023, 14(1) DOI:10.1080/19491034.2023.2202548 |
36. | Anna G. Manjón, Stefano Giustino Manzo, Stefan Prekovic, et al. Perturbations in 3D genome organization can promote acquired drug resistance. Cell Reports, 2023, 42(10): 113124. DOI:10.1016/j.celrep.2023.113124 |
37. | Sara Zocher, Tomohisa Toda. Epigenetic aging in adult neurogenesis. Hippocampus, 2023, 33(4): 347. DOI:10.1002/hipo.23494 |
38. | Kartik Kamat, Zhuohan Lao, Yifeng Qi, et al. Compartmentalization with nuclear landmarks yields random, yet precise, genome organization. Biophysical Journal, 2023, 122(7): 1376. DOI:10.1016/j.bpj.2023.03.003 |
39. | Patricia Jiménez Peinado, Anja Urbach. From Youthful Vigor to Aging Decline: Unravelling the Intrinsic and Extrinsic Determinants of Hippocampal Neural Stem Cell Aging. Cells, 2023, 12(16): 2086. DOI:10.3390/cells12162086 |
40. | Salvatore Martino, Pietro Salvatore Carollo, Viviana Barra. A Glimpse into Chromatin Organization and Nuclear Lamina Contribution in Neuronal Differentiation. Genes, 2023, 14(5): 1046. DOI:10.3390/genes14051046 |
41. | Nicholas S. Alagna, Tiera I. Thomas, Katherine L. Wilson, et al. Choreography of lamina‐associated domains: structure meets dynamics. FEBS Letters, 2023, 597(22): 2806. DOI:10.1002/1873-3468.14771 |
42. | Shruti Pande, Debasish Kumar Ghosh. Nuclear proteostasis imbalance in laminopathy‐associated premature aging diseases. The FASEB Journal, 2023, 37(8) DOI:10.1096/fj.202300878R |
43. | Chunmei Yin, Aiqing Sun, Tongtong Guo, et al. Arabidopsis lamin-like proteins CRWN1 and CRWN2 interact with SUPPRESSOR OF NPR1-1 INDUCIBLE 1 and RAD51D to prevent DNA damage. The Plant Cell, 2023, 35(9): 3345. DOI:10.1093/plcell/koad169 |
44. | Wen Fu, Xianxing Wang, Jifeng Xiang, et al. CircPTPRA promotes the progression of pancreatic ductal adenocarcinoma via the miR‐140‐5p/LMNB1 axis. Cancer Medicine, 2023, 12(10): 11651. DOI:10.1002/cam4.5869 |
45. | Ivan Mestres, Judith Houtman, Federico Calegari, et al. A Nuclear Belt Fastens on Neural Cell Fate. Cells, 2022, 11(11): 1761. DOI:10.3390/cells11111761 |
46. | Natalie J. Kirkland, Scott H. Skalak, Alexander J. Whitehead, et al. Age-dependent Lamin changes induce cardiac dysfunction via dysregulation of cardiac transcriptional programs. Nature Aging, 2022, 3(1): 17. DOI:10.1038/s43587-022-00323-8 |
47. | Laia Richart, Mary-Loup Picod-Chedotel, Michel Wassef, et al. XIST loss impairs mammary stem cell differentiation and increases tumorigenicity through Mediator hyperactivation. Cell, 2022, 185(12): 2164. DOI:10.1016/j.cell.2022.04.034 |
48. | Zhongling Jiang, Yifeng Qi, Kartik Kamat, et al. Phase Separation and Correlated Motions in Motorized Genome. The Journal of Physical Chemistry B, 2022, 126(30): 5619. DOI:10.1021/acs.jpcb.2c03238 |
49. | Zunpeng Liu, Qianzhao Ji, Jie Ren, et al. Large-scale chromatin reorganization reactivates placenta-specific genes that drive cellular aging. Developmental Cell, 2022, 57(11): 1347. DOI:10.1016/j.devcel.2022.05.004 |
50. | Maria Gridina, Veniamin Fishman. Multilevel view on chromatin architecture alterations in cancer. Frontiers in Genetics, 2022, 13 DOI:10.3389/fgene.2022.1059617 |
51. | Nan Wang, Ezgi Süheyla Karaaslan, Natalie Faiss, et al. Characterization of a Plant Nuclear Matrix Constituent Protein in Liverwort. Frontiers in Plant Science, 2021, 12 DOI:10.3389/fpls.2021.670306 |
52. | Luis F. Flores, Brooke R. Tader, Ezequiel J. Tolosa, et al. Nuclear Dynamics and Chromatin Structure: Implications for Pancreatic Cancer. Cells, 2021, 10(10): 2624. DOI:10.3390/cells10102624 |
53. | Azumi Noguchi, Kenji Ito, Yuichi Uosaki, et al. Decreased Lamin B1 Levels Affect Gene Positioning and Expression in Postmitotic Neurons. Neuroscience Research, 2021, 173: 22. DOI:10.1016/j.neures.2021.05.011 |
54. | Ália dos Santos, Christopher P. Toseland. Regulation of Nuclear Mechanics and the Impact on DNA Damage. International Journal of Molecular Sciences, 2021, 22(6): 3178. DOI:10.3390/ijms22063178 |
55. | Rui Zhou, Yi Qin Gao. A DNA Sequence Based Polymer Model for Chromatin Folding. International Journal of Molecular Sciences, 2021, 22(3): 1328. DOI:10.3390/ijms22031328 |
56. | J. Yuyang Lu, Lei Chang, Tong Li, et al. Homotypic clustering of L1 and B1/Alu repeats compartmentalizes the 3D genome. Cell Research, 2021, 31(6): 613. DOI:10.1038/s41422-020-00466-6 |
57. | Rita Torres Pereira, Cresentia Samarakone, Joanna M. Bridger, et al. Nuclear Proteins. Advances in Protein Chemistry and Structural Biology, DOI:10.1016/bs.apcsb.2024.09.007 |
This is a modal window.
This is a modal window.