Volume 12 Issue 5
May  2021
Turn off MathJax
Article Contents
Ling Jin, Xiaoming Shi, Jing Yang, Yangyu Zhao, Lixiang Xue, Li Xu, Jun Cai. Gut microbes in cardiovascular diseases and their potential therapeutic applications[J]. Protein&Cell, 2021, 12(5): 346-359. doi: 10.1007/s13238-020-00785-9
Citation: Ling Jin, Xiaoming Shi, Jing Yang, Yangyu Zhao, Lixiang Xue, Li Xu, Jun Cai. Gut microbes in cardiovascular diseases and their potential therapeutic applications[J]. Protein&Cell, 2021, 12(5): 346-359. doi: 10.1007/s13238-020-00785-9

Gut microbes in cardiovascular diseases and their potential therapeutic applications

doi: 10.1007/s13238-020-00785-9
Funds:

This work is supported by the National Key R&D Program of China (Project ID. 2018YFC1312703), CAMS Innovation Fund for Medical Sciences (2016-I2M-1-006), National Natural Science Foundation of China (81630014, 81700374, 81825002, 91749107), Beijing Outstanding Young Scientist Program (BJJWZYJH01201910023029) and Interdisciplinary Medicine Seed Fund of Peking University (BMU2020MX021).

  • Received Date: 2020-05-05
  • Rev Recd Date: 2020-08-19
  • Microbial ecosystem comprises a complex community in which bacteria interact with each other. The potential roles of the intestinal microbiome play in human health have gained considerable attention. The imbalance of gut microbial community has been looked to multiple chronic diseases. Cardiovascular diseases (CVDs) are leading causes of morbidity worldwide and are influenced by genetic and environmental factors. Recent advances have provided scientific evidence that CVD may also be attributed to gut microbiome. In this review, we highlight the complex interplay between microbes, their metabolites, and the potential influence on the generation and development of CVDs. The therapeutic potential of using intestinal microbiomes to treat CVD is also discussed. It is quite possible that gut microbes may be used for clinical treatments of CVD in the near future.
  • loading
  • [1]
    Adnan S, Nelson JW, Ajami NJ, Venna VR, Petrosino JF, Bryan RM Jr, Durgan DJ (2017) Alterations in the gut microbiota can elicit hypertension in rats. Physiol Genomics 49:96-104
    [2]
    Aguilar EC, Leonel AJ, Teixeira LG, Silva AR, Silva JF, Pelaez JM, Capettini LS, Lemos VS, Santos RA, Alvarez-Leite JI (2014) Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFkappaB activation. Nutr Metab Cardiovasc Dis 24:606-613
    [3]
    Ahmad AF, Dwivedi G, O'Gara F, Caparros-Martin J, Ward NC (2019) The gut microbiome and cardiovascular disease:current knowledge and clinical potential. Am J Physiol Heart Circ Physiol 317:H923-H938
    [4]
    Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, Bray GA, Vogt TM, Cutler JA, Windhauser MM et al (1997) A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med 336:1117-1124
    [5]
    Azad MAK, Sarker M, Li T, Yin J (2018) Probiotic species in the modulation of gut microbiota:an overview. Biomed Res Int 2018:9478630
    [6]
    Bartolomaeus H, Balogh A, Yakoub M, Homann S, Marko L, Hoges S, Tsvetkov D, Krannich A, Wundersitz S, Avery EG et al (2019) Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation 139:1407-1421
    [7]
    Battson ML, Lee DM, Jarrell DK, Hou S, Ecton KE, Weir TL, Gentile CL (2018a) Suppression of gut dysbiosis reverses Western diet-induced vascular dysfunction. Am J Physiol Endocrinol Metab 314:E468-E477
    [8]
    Battson ML, Lee DM, Weir TL, Gentile CL (2018b) The gut microbiota as a novel regulator of cardiovascular function and disease. J Nutr Biochem 56:1-15
    [9]
    Blacher E, Levy M, Tatirovsky E, Elinav E (2017) Microbiome-modulated metabolites at the interface of host immunity. J Immunol 198:572-580
    [10]
    Brunt VE, Gioscia-Ryan RA, Casso AG, VanDongen NS, Ziemba BP, Sapinsley ZJ, Richey JJ, Zigler MC, Neilson AP, Davy KP et al (2020) Trimethylamine-N-oxide promotes age-related vascular oxidative stress and endothelial dysfunction in mice and healthy humans. Hypertension 76:101-112
    [11]
    Cason CA, Dolan KT, Sharma G, Tao M, Kulkarni R, Helenowski IB, Doane BM, Avram MJ, McDermott MM, Chang EB et al (2018) Plasma microbiome-modulated indole- and phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes. J Vasc Surg 68(1552-1562):e1557
    [12]
    Castillo DJ, Rifkin RF, Cowan DA, Potgieter M (2019) The healthy human blood microbiome:fact or fiction? Front Cell Infect Microbiol 9:148
    [13]
    Chan YK, Brar MS, Kirjavainen PV, Chen Y, Peng J, Li D, Leung FC, El-Nezami H (2016a) High fat diet induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A-FABP and cholesterol:a pilot study of high fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoE(-/-) mice. BMC Microbiol 16:264
    [14]
    Chan YK, El-Nezami H, Chen Y, Kinnunen K, Kirjavainen PV (2016b) Probiotic mixture VSL#3 reduce high fat diet induced vascular inflammation and atherosclerosis in ApoE(-/-) mice. AMB Express 6:61
    [15]
    Chen S, Henderson A, Petriello MC, Romano KA, Gearing M, Miao J, Schell M, Sandoval-Espinola WJ, Tao J, Sha B et al (2019) Trimethylamine N-oxide binds and activates PERK to promote metabolic dysfunction. Cell Metab 30(1141-1151):e1145
    [16]
    Cheng YJ, Nie XY, Chen XM, Lin XX, Tang K, Zeng WT, Mei WY, Liu LJ, Long M, Yao FJ et al (2015) The role of macrolide antibiotics in increasing cardiovascular risk. J Am Coll Cardiol 66:2173-2184
    [17]
    Cheung F (2011) TCM:made in China. Nature 480:S82-83
    [18]
    Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health:an integrative view. Cell 148:1258-1270
    [19]
    Cui X, Ye L, Li J, Jin L, Wang W, Li S, Bao M, Wu S, Li L, Geng B et al (2018) Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep 8:635
    [20]
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559-563
    [21]
    Davignon J, Ganz P (2004) Role of endothelial dysfunction in atherosclerosis. Circulation 109:Ⅲ27-Ⅲ32
    [22]
    De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, Serrazanetti DI, Di Cagno R, Ferrocino I, Lazzi C et al (2016) High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65:1812-1821
    [23]
    Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, Pudlo NA, Kitamoto S, Terrapon N, Muller A et al (2016) A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167(1339-1353):e1321
    [24]
    Dinakaran V, John L, Rathinavel A, Gunasekaran P, Rajendhran J (2012) Prevalence of bacteria in the circulation of cardiovascular disease patients, Madurai, India. Heart Lung Circ 21:281-283
    [25]
    Dinakaran V, Rathinavel A, Pushpanathan M, Sivakumar R, Gunasekaran P, Rajendhran J (2014) Elevated levels of circulating DNA in cardiovascular disease patients:metagenomic profiling of microbiome in the circulation. PLoS ONE 9:e105221
    [26]
    Donohoe DR, Garge N, Zhang X, Sun W, O'Connell TM, Bunger MK, Bultman SJ (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13:517-526
    [27]
    Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE (2007) Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 73:1073-1078
    [28]
    Durgan DJ, Ganesh BP, Cope JL, Ajami NJ, Phillips SC, Petrosino JF, Hollister EB, Bryan RM Jr (2016) Role of the gut microbiome in obstructive sleep apnea-induced hypertension. Hypertension 67:469-474
    [29]
    Fak F, Backhed F (2012) Lactobacillus reuteri prevents diet-induced obesity, but not atherosclerosis, in a strain dependent fashion in Apoe-/- mice. PLoS ONE 7:e46837
    [30]
    Franzosa EA, Hsu T, Sirota-Madi A, Shafquat A, Abu-Ali G, Morgan XC, Huttenhower C (2015) Sequencing and beyond:integrating molecular ‘omics’ for microbial community profiling. Nat Rev Microbiol 13:360-372
    [31]
    Fukami K, Yamagishi S, Sakai K, Kaida Y, Yokoro M, Ueda S, Wada Y, Takeuchi M, Shimizu M, Yamazaki H et al (2015) Oral L-carnitine supplementation increases trimethylamine-N-oxide but reduces markers of vascular injury in hemodialysis patients. J Cardiovasc Pharmacol 65:289-295
    [32]
    Gan XT, Ettinger G, Huang CX, Burton JP, Haist JV, Rajapurohitam V, Sidaway JE, Martin G, Gloor GB, Swann JR et al (2014) Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ Heart Fail 7:491-499
    [33]
    Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M, Dekker Nitert M, Group ST (2016) Increased systolic and diastolic blood pressure is associated with altered gut microbiota composition and butyrate production in early pregnancy. Hypertension 68:974-981
    [34]
    Gomez-Guzman M, Toral M, Romero M, Jimenez R, Galindo P, Sanchez M, Zarzuelo MJ, Olivares M, Galvez J, Duarte J (2015) Antihypertensive effects of probiotics Lactobacillus strains in spontaneously hypertensive rats. Mol Nutr Food Res 59:2326-2336
    [35]
    Gozd-Barszczewska A, Koziol-Montewka M, Barszczewski P, Mlodzinska A, Huminska K (2017) Gut microbiome as a biomarker of cardiometabolic disorders. Ann Agric Environ Med 24:416-422
    [36]
    Halkjaer SI, Christensen AH, Lo BZS, Browne PD, Gunther S, Hansen LH, Petersen AM (2018) Faecal microbiota transplantation alters gut microbiota in patients with irritable bowel syndrome:results from a randomised, double-blind placebo-controlled study. Gut 67:2107-2115
    [37]
    He K, Hu Y, Ma H, Zou Z, Xiao Y, Yang Y, Feng M, Li X, Ye X (2016) Rhizoma Coptidis alkaloids alleviate hyperlipidemia in B6 mice by modulating gut microbiota and bile acid pathways. Biochim Biophys Acta 1862:1696-1709
    [38]
    Honour JW, Borriello SP, Ganten U, Honour P (1985) Antibiotics attenuate experimental hypertension in rats. J Endocrinol 105:347-350
    [39]
    Huang Y, Wang J, Quan G, Wang X, Yang L, Zhong L (2014) Lactobacillus acidophilus ATCC 4356 prevents atherosclerosis via inhibition of intestinal cholesterol absorption in apolipoprotein E-knockout mice. Appl Environ Microbiol 80:7496-7504
    [40]
    Isabella VM, Ha BN, Castillo MJ, Lubkowicz DJ, Rowe SE, Millet YA, Anderson CL, Li N, Fisher AB, West KA et al (2018) Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat Biotechnol 36:857-864
    [41]
    Jie Z, Xia H, Zhong SL, Feng Q, Li S, Liang S, Zhong H, Liu Z, Gao Y, Zhao H et al (2017) The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 8:845
    [42]
    Jin M, Qian Z, Yin J, Xu W, Zhou X (2019) The role of intestinal microbiota in cardiovascular disease. J Cell Mol Med 23:2343-2350
    [43]
    Kamo T, Akazawa H, Suda W, Saga-Kamo A, Shimizu Y, Yagi H, Liu Q, Nomura S, Naito AT, Takeda N et al (2017) Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS ONE 12:e0174099
    [44]
    Karlsson C, Ahrne S, Molin G, Berggren A, Palmquist I, Fredrikson GN, Jeppsson B (2010) Probiotic therapy to men with incipient arteriosclerosis initiates increased bacterial diversity in colon:a randomized controlled trial. Atherosclerosis 208:228-233
    [45]
    Karlsson FH, Fak F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, Backhed F, Nielsen J (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 3:1245
    [46]
    Kasahara K, Krautkramer KA, Org E, Romano KA, Kerby RL, Vivas EI, Mehrabian M, Denu JM, Backhed F, Lusis AJ et al (2018) Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat Microbiol 3:1461-1471
    [47]
    Khalesi S, Sun J, Buys N, Jayasinghe R (2014) Effect of probiotics on blood pressure:a systematic review and meta-analysis of randomized, controlled trials. Hypertension 64:897-903
    [48]
    Khalesi S, Bellissimo N, Vandelanotte C, Williams S, Stanley D, Irwin C (2019) A review of probiotic supplementation in healthy adults:helpful or hype? Eur J Clin Nutr 73:24-37
    [49]
    Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L et al (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19:576-585
    [50]
    Lam V, Su J, Koprowski S, Hsu A, Tweddell JS, Rafiee P, Gross GJ, Salzman NH, Baker JE (2012) Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J 26:1727-1735
    [51]
    Lam V, Su J, Hsu A, Gross GJ, Salzman NH, Baker JE (2016) Intestinal microbial metabolites are linked to severity of myocardial infarction in rats. PLoS ONE 11:e0160840
    [52]
    Lam KN, Alexander M, Turnbaugh PJ (2019) Precision medicine goes microscopic:engineering the microbiome to improve drug outcomes. Cell Host Microbe 26:22-34
    [53]
    Li M, Shu X, Xu H, Zhang C, Yang L, Zhang L, Ji G (2016) Integrative analysis of metabolome and gut microbiota in diet-induced hyperlipidemic rats treated with berberine compounds. J Transl Med 14:237
    [54]
    Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, Wu S, Liu W, Cui Q, Geng B et al (2017a) Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5:14
    [55]
    Li XS, Obeid S, Klingenberg R, Gencer B, Mach F, Raber L, Windecker S, Rodondi N, Nanchen D, Muller O et al (2017b) Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes:a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J 38:814-824
    [56]
    Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135-1143
    [57]
    Lopez-Mejias R, Genre F, Garcia-Bermudez M, Ubilla B, Castaneda S, Llorca J, Gonzalez-Juanatey C, Corrales A, Miranda-Filloy JA, Pina T et al (2014) Lack of association between ABO, PPAP2B, ADAMST7, PIK3CG, and EDNRA and carotid intima-media thickness, carotid plaques, and cardiovascular disease in patients with rheumatoid arthritis. Mediators Inflamm 2014:756279
    [58]
    Luedde M, Winkler T, Heinsen FA, Ruhlemann MC, Spehlmann ME, Bajrovic A, Lieb W, Franke A, Ott SJ, Frey N (2017) Heart failure is associated with depletion of core intestinal microbiota. ESC Heart Fail 4:282-290
    [59]
    Mamic P, Heidenreich PA, Hedlin H, Tennakoon L, Staudenmayer KL (2016) Hospitalized patients with heart failure and common bacterial infections:a nationwide analysis of concomitant clostridium difficile infection rates and in-hospital mortality. J Card Fail 22:891-900
    [60]
    Marques FZ, Nelson E, Chu PY, Horlock D, Fiedler A, Ziemann M, Tan JK, Kuruppu S, Rajapakse NW, El-Osta A et al (2017) High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 135:964-977
    [61]
    Maruvada P, Leone V, Kaplan LM, Chang EB (2017) The human microbiome and obesity:moving beyond associations. Cell Host Microbe 22:589-599
    [62]
    Mell B, Jala VR, Mathew AV, Byun J, Waghulde H, Zhang Y, Haribabu B, Vijay-Kumar M, Pennathur S, Joe B (2015) Evidence for a link between gut microbiota and hypertension in the Dahl rat. Physiol Genomics 47:187-197
    [63]
    Mencarelli A, Cipriani S, Renga B, Bruno A, D'Amore C, Distrutti E, Fiorucci S (2012) VSL#3 resets insulin signaling and protects against NASH and atherosclerosis in a model of genetic dyslipidemia and intestinal inflammation. PLoS ONE 7:e45425
    [64]
    Molin G (2001) Probiotics in foods not containing milk or milk constituents, with special reference to Lactobacillus plantarum 299v. Am J Clin Nutr 73:380S-385S
    [65]
    Naruszewicz M, Johansson ML, Zapolska-Downar D, Bukowska H (2002) Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers. Am J Clin Nutr 76:1249-1255
    [66]
    Natarajan N, Hori D, Flavahan S, Steppan J, Flavahan NA, Berkowitz DE, Pluznick JL (2016) Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiol Genomics 48:826-834
    [67]
    Nemet I, Saha PP, Gupta N, Zhu W, Romano KA, Skye SM, Cajka T, Mohan ML, Li L, Wu Y et al (2020) A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell 180(862-877):e822
    [68]
    Ott SJ, El Mokhtari NE, Musfeldt M, Hellmig S, Freitag S, Rehman A, Kuhbacher T, Nikolaus S, Namsolleck P, Blaut M et al (2006) Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation 113:929-937
    [69]
    Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E (2016) The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 8:78
    [70]
    Pasini E, Aquilani R, Testa C, Baiardi P, Angioletti S, Boschi F, Verri M, Dioguardi F (2016) Pathogenic gut flora in patients with chronic heart failure. JACC Heart Fail 4:220-227
    [71]
    Pluznick J (2014) A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes 5:202-207
    [72]
    Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, Brunet I, Wan LX, Rey F, Wang T et al (2013) Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA 110:4410-4415
    [73]
    Poesen R, Claes K, Evenepoel P, de Loor H, Augustijns P, Kuypers D, Meijers B (2016) Microbiota-derived phenylacetylglutamine associates with overall mortality and cardiovascular disease in patients with CKD. J Am Soc Nephrol 27:3479-3487
    [74]
    Portugal LR, Goncalves JL, Fernandes LR, Silva HP, Arantes RM, Nicoli JR, Vieira LQ, Alvarez-Leite JI (2006) Effect of Lactobacillus delbrueckii on cholesterol metabolism in germ-free mice and on atherogenesis in apolipoprotein E knock-out mice. Braz J Med Biol Res 39:629-635
    [75]
    Qi Y, Aranda JM, Rodriguez V, Raizada MK, Pepine CJ (2015) Impact of antibiotics on arterial blood pressure in a patient with resistant hypertension-a case report. Int J Cardiol 201:157-158
    [76]
    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59-65
    [77]
    Rajendhran J, Shankar M, Dinakaran V, Rathinavel A, Gunasekaran P (2013) Contrasting circulating microbiome in cardiovascular disease patients and healthy individuals. Int J Cardiol 168:5118-5120
    [78]
    Roberts AB, Gu X, Buffa JA, Hurd AG, Wang Z, Zhu W, Gupta N, Skye SM, Cody DB, Levison BS et al (2018) Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med 24:1407-1417
    [79]
    Ronda C, Chen SP, Cabral V, Yaung SJ, Wang HH (2019) Metagenomic engineering of the mammalian gut microbiome in situ. Nat Methods 16:167-170
    [80]
    Sandek A, Bauditz J, Swidsinski A, Buhner S, Weber-Eibel J, von Haehling S, Schroedl W, Karhausen T, Doehner W, Rauchhaus M et al (2007) Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol 50:1561-1569
    [81]
    Sandek A, Bjarnason I, Volk HD, Crane R, Meddings JB, Niebauer J, Kalra PR, Buhner S, Herrmann R, Springer J et al (2012) Studies on bacterial endotoxin and intestinal absorption function in patients with chronic heart failure. Int J Cardiol 157:80-85
    [82]
    Santisteban MM, Qi Y, Zubcevic J, Kim S, Yang T, Shenoy V, Cole-Jeffrey CT, Lobaton GO, Stewart DC, Rubiano A et al (2017) Hypertension-linked pathophysiological alterations in the gut. Circ Res 120:312-323
    [83]
    Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90:859-904
    [84]
    Seldin MM, Meng Y, Qi H, Zhu W, Wang Z, Hazen SL, Lusis AJ, Shih DM (2016) Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-kappaB. J Am Heart Assoc 5.
    [85]
    Senthong V, Wang Z, Fan Y, Wu Y, Hazen SL, Tang WH (2016a) Trimethylamine N-oxide and mortality risk in patients with peripheral artery disease. J Am Heart Assoc 5.
    [86]
    Senthong V, Wang Z, Li XS, Fan Y, Wu Y, Tang WH, Hazen SL (2016b) Intestinal microbiota-generated metabolite trimethylamine-N-oxide and 5-year mortality risk in stable coronary artery disease:the contributory role of intestinal microbiota in a COURAGE-like patient cohort. J Am Heart Assoc 5.
    [87]
    Shimizu M, Hashiguchi M, Shiga T, Tamura HO, Mochizuki M (2015) Meta-analysis:effects of probiotic supplementation on lipid profiles in normal to mildly hypercholesterolemic individuals. PLoS ONE 10:e0139795
    [88]
    Tang WH, Hazen SL (2017) The gut microbiome and its role in cardiovascular diseases. Circulation 135:1008-1010
    [89]
    Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, Hazen SL (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368:1575-1584
    [90]
    Tang WH, Wang Z, Fan Y, Levison B, Hazen JE, Donahue LM, Wu Y, Hazen SL (2014) Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure:refining the gut hypothesis. J Am Coll Cardiol 64:1908-1914
    [91]
    Tang WH, Wang Z, Shrestha K, Borowski AG, Wu Y, Troughton RW, Klein AL, Hazen SL (2015) Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J Card Fail 21:91-96
    [92]
    Trichopoulou A, Bamia C, Trichopoulos D (2009) Anatomy of health effects of Mediterranean diet:Greek EPIC prospective cohort study. BMJ 338:b2337
    [93]
    Turnbaugh PJ (2020) Diet should be a tool for researchers, not a treatment. Nature 577:S23
    [94]
    Vaghef-Mehrabany E, Vaghef-Mehrabany L, Asghari-Jafarabadi M, Homayouni-Rad A, Issazadeh K, Alipour B (2017) Effects of probiotic supplementation on lipid profile of women with rheumatoid arthritis:A randomized placebo-controlled clinical trial. Health Promot Perspect 7:95-101
    [95]
    van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JF, Tijssen JG et al (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368:407-415
    [96]
    Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS, Bartelsman JF, Dallinga-Thie GM, Ackermans MT, Serlie MJ, Oozeer R et al (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143(913-916):e917
    [97]
    Walter J, Armet AM, Finlay BB, Shanahan F (2020) Establishing or exaggerating causality for the gut microbiome:lessons from human microbiota-associated rodents. Cell 180:221-232
    [98]
    Wang Z, Zhao Y (2018) Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell 9:416-431
    [99]
    Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57-63
    [100]
    Wang Z, Tang WH, Buffa JA, Fu X, Britt EB, Koeth RA, Levison BS, Fan Y, Wu Y, Hazen SL (2014) Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J 35:904-910
    [101]
    Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, Gu X, Huang Y, Zamanian-Daryoush M, Culley MK et al (2015) Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163:1585-1595
    [102]
    Wang L, Zhu Q, Lu A, Liu X, Zhang L, Xu C, Liu X, Li H, Yang T (2017) Sodium butyrate suppresses angiotensin Ⅱ-induced hypertension by inhibition of renal (pro)renin receptor and intrarenal renin-angiotensin system. J Hypertens 35:1899-1908
    [103]
    Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, Haase S, Mahler A, Balogh A, Marko L et al (2017) Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551:585-589
    [104]
    Wu XM, Tan RX (2019) Interaction between gut microbiota and ethnomedicine constituents. Nat Prod Rep 36:788-809
    [105]
    Xiao S, Fei N, Pang X, Shen J, Wang L, Zhang B, Zhang M, Zhang X, Zhang C, Li M et al (2014) A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiol Ecol 87:357-367
    [106]
    Xu Z, Knight R (2015) Dietary effects on human gut microbiome diversity. Br J Nutr 113(Suppl):S1-5
    [107]
    Xue L, He J, Gao N, Lu X, Li M, Wu X, Liu Z, Jin Y, Liu J, Xu J et al (2017) Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci Rep 7:45176
    [108]
    Yan Q, Gu Y, Li X, Yang W, Jia L, Chen C, Han X, Huang Y, Zhao L, Li P et al (2017) Alterations of the gut microbiome in hypertension. Front Cell Infect Microbiol 7:381
    [109]
    Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM, Zadeh M, Gong M, Qi Y, Zubcevic J et al (2015) Gut dysbiosis is linked to hypertension. Hypertension 65:1331-1340
    [110]
    Zhang F, Cui B, He X, Nie Y, Wu K, Fan D, Group FMSS (2018) Microbiota transplantation:concept, methodology and strategy for its modernization. Protein Cell 9:462-473
    [111]
    Zhang F, Zhang T, Zhu H, Borody TJ (2019) Evolution of fecal microbiota transplantation in methodology and ethical issues. Curr Opin Pharmacol 49:11-16
    [112]
    Zhou X, Li J, Guo J, Geng B, Ji W, Zhao Q, Li J, Liu X, Liu J, Guo Z et al (2018) Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome 6:66
    [113]
    Zhu W, Lin K, Li K, Deng X, Li C (2018) Reshaped fecal gut microbiota composition by the intake of high molecular weight persimmon tannin in normal and high-cholesterol diet-fed rats. Food Funct 9:541-551
    [114]
    Ziganshina EE, Sharifullina DM, Lozhkin AP, Khayrullin RN, Ignatyev IM, Ziganshin AM (2016) Bacterial communities associated with atherosclerotic plaques from russian individuals with atherosclerosis. PLoS ONE 11:e0164836
    [115]
    Zuo K, Li J, Li K, Hu C, Gao Y, Chen M, Hu R, Liu Y, Chi H, Wang H et al (2019a) Disordered gut microbiota and alterations in metabolic patterns are associated with atrial fibrillation. Gigascience 8.
    [116]
    Zuo K, Li J, Wang P, Liu Y, Liu Z, Yin X, Liu X, Yang X (2019b) Duration of persistent atrial fibrillation is associated with alterations in human gut microbiota and metabolic phenotypes. mSystems 4.
    [117]
    Zuo K, Li J, Xu Q, Hu C, Gao Y, Chen M, Hu R, Liu Y, Chi H, Yin Q et al (2019c) Dysbiotic gut microbes may contribute to hypertension by limiting vitamin D production. Clin Cardiol 42:710-719
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (147) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return