2015 Vol. 6(9)

Alice M. Boring: a pioneer in the study of Chinese amphibians and reptiles
Shu Zheng
2015, 6(9): 625-627. doi: 10.1007/s13238-015-0165-1
Functional metabolomics: from biomarker discovery to metabolome reprogramming
Bo Peng, Hui Li, Xuan-Xian Peng
2015, 6(9): 628-637. doi: 10.1007/s13238-015-0185-x
Metabolomics is emerging as a powerful tool for studying metabolic processes, identifying crucial biomarkers responsible for metabolic characteristics and revealing metabolic mechanisms, which construct the content of discovery metabolomics. The crucial biomarkers can be used to reprogram a metabolome, leading to an aimed metabolic strategy to cope with alteration of internal and external environments, naming reprogramming metabolomics here. The striking feature on the similarity of the basic metabolic pathways and components among vastly different species makes the reprogramming metabolomics possible when the engineered metabolites play biological roles in cellular activity as a substrate of enzymes and a regulator to other molecules including proteins. The reprogramming metabolomics approach can be used to clarify metabolic mechanisms of responding to changed internal and external environmental factors and to establish a framework to develop targeted tools for dealing with the changes such as controlling and/or preventing infection with pathogens and enhancing host immunity against pathogens. This review introduces the current state and trends of discovery metabolomics and reprogramming metabolomics and highlights the importance of reprogramming metabolomics.
Biomaterials as carrier, barrier and reactor for cell-based regenerative medicine
Chunxiao Qi, Xiaojun Yan, Chenyu Huang, Alexander Melerzanov, Yanan Du
2015, 6(9): 638-653. doi: 10.1007/s13238-015-0179-8
Cell therapy has achieved tremendous success in regenerative medicine in the past several decades. However, challenges such as cell loss, death and immune-rejection after transplantation still persist. Biomaterials have been designed as carriers to deliver cells to desirable region for local tissue regeneration; as barriers to protect transplanted cells from host immune attack; or as reactors to stimulate host cell recruitment, homing and differentiation. With the assistance of biomaterials, improvement in treatment efficiency has been demonstrated in numerous animal models of degenerative diseases compared with routine free cell-based therapy. Emerging clinical applications of biomaterial assisted cell therapies further highlight their great promise in regenerative therapy and even cure for complex diseases, which have been failed to realize by conventional therapeutic approaches.
Research articles
NSC-640358 acts as RXRα ligand to promote TNFα-mediated apoptosis of cancer cell
Fan Chen, Jiebo Chen, Jiacheng Lin, Anton V. Cheltsov, Lin Xu, Ya Chen, Zhiping Zeng, Liqun Chen, Mingfeng Huang, Mengjie Hu, Xiaohong Ye, Yuqi Zhou, Guanghui Wang, Ying Su, Long Zhang, Fangfang Zhou, Xiao-kun Zhang, Hu Zhou
2015, 6(9): 654-666. doi: 10.1007/s13238-015-0178-9
Retinoid X receptor α (RXRα) and its N-terminally truncated version tRXRα play important roles in tumorigenesis, while some RXRα ligands possess potent anticancer activities by targeting and modulating the tumorigenic effects of RXRα and tRXRα. Here we describe NSC-640358 (N-6), a thiazolyl-pyrazole derived compound, acts as a selective RXRα ligand to promote TNFα-mediated apoptosis of cancer cell. N-6 binds to RXRα and inhibits the transactivation of RXRα homodimer and RXRα/TR3 heterodimer. Using mutational analysis and computational study, we determine that Arg316 in RXRα, essential for 9-cis-retinoic acid binding and activating RXRα transactivation, is not required for antagonist effects of N-6, whereas Trp305 and Phe313 are crucial for N-6 binding to RXRα by forming extra π-π stacking interactions with N-6, indicating a distinct RXRα binding mode of N-6. N-6 inhibits TR3-stimulated transactivation of Gal4-DBD-RXRα-LBD by binding to the ligand binding pocket of RXRα-LBD, suggesting a strategy to regulate TR3 activity indirectly by using small molecules to target its interacting partner RXRα. For its physiological activities, we show that N-6 strongly inhibits tumor necrosis factor α (TNFα)-induced AKT activation and stimulates TNFα-mediated apoptosis in cancer cells in an RXRα/tRXRα dependent manner. The inhibition of TNFα-induced tRXRα/p85α complex formation by N-6 implies that N-6 targets tRXRα to inhibit TNFα-induced AKT activation and to induce cancer cell apoptosis. Together, our data illustrate a new RXRα ligand with a unique RXRα binding mode and the abilities to regulate TR3 activity indirectly and to induce TNFα-mediated cancer cell apoptosis by targeting RXRα/tRXRα.
Binding of Shewanella FadR to the fabA fatty acid biosynthetic gene: implications for contraction of the fad regulon
Huimin Zhang, Beiwen Zheng, Rongsui Gao, Youjun Feng
2015, 6(9): 667-679. doi: 10.1007/s13238-015-0172-2
The Escherichia coli fadR protein product, a paradigm/prototypical FadR regulator, positively regulates fabA and fabB, the two critical genes for unsaturated fatty acid (UFA) biosynthesis. However the scenario in the other Ɣ-proteobacteria, such as Shewanella with the marine origin, is unusual in that Rodionov and coworkers predicted that only fabA (not fabB) has a binding site for FadR protein. It raised the possibility of fad regulon contraction. Here we report that this is the case. Sequence alignment of the FadR homologs revealed that the N-terminal DNA-binding domain exhibited remarkable similarity, whereas the ligand-accepting motif at C-terminus is relatively-less conserved. The FadR homologue of S. oneidensis (referred to FadR_she) was over-expressed and purified to homogeneity. Integrative evidence obtained by FPLC (fast protein liquid chromatography) and chemical crosslinking analyses elucidated that FadR_she protein can dimerize in solution, whose identity was determined by MALDI-TOF-MS. In vitro data from electrophoretic mobility shift assays suggested that FadR_she is almost functionally-exchangeable/equivalent to E. coli FadR (FadR_ec) in the ability of binding the E. coli fabA (and fabB) promoters. In an agreement with that of E. coli fabA, S. oneidensis fabA promoter bound both FadR_she and FadR_ec, and was disassociated specifically with the FadR regulatory protein upon the addition of long-chain acyl-CoA thioesters. To monitor in vivo effect exerted by FadR on Shewanella fabA expression, the native promoter of S. oneidensis fabA was fused to a LacZ reporter gene to engineer a chromosome fabA-lacZ transcriptional fusion in E. coli. As anticipated, the removal of fadR gene gave about 2-fold decrement of Shewanella fabA expression by β-gal activity, which is almost identical to the inhibitory level by the addition of oleate. Therefore, we concluded that fabA is contracted to be the only one member of fad regulon in the context of fatty acid synthesis in the marine bacteria Shewanella genus.
MicroRNA-638 inhibits cell proliferation by targeting phospholipase D1 in human gastric carcinoma
Jiwei Zhang, Zehua Bian, Jialiang Zhou, Mingxu Song, Zhihui Liu, Yuyang Feng, Li Zhe, Binbin Zhang, Yuan Yin, Zhaohui Huang
2015, 6(9): 680-688. doi: 10.1007/s13238-015-0187-8
MicroRNAs (miRNAs) are a type of small non-coding RNAs that are often play important roles in carcinogenesis, but the carcinogenic mechanism of miRNAs is still unclear. This study will investigate the function and the mechanism of miR-638 in carcinoma (GC). The expression of miR-638 in GC and the DNA copy number of miR-638 were detected by real-time PCR. The effect of miR-638 on cell proliferation was measured by counting kit-8 assay. Different assays, including bioinformatics algorithms (TargetScan and miRanda), luciferase report assay and Western blotting, were used to identify the target gene of miR-638 in GC. The expression of miR-638 target gene in clinical CRC tissues was also validated by immunohistochemical assay. From this research, we found that miR-638 was downregulated in GC tissues compared with corresponding noncancerous tissues (NCTs), and the DNA copy number of miR-638 was lower in GC than NCTs, which may induce the corresponding downregulation of miR-638 in GC. Ectopic expression of miR-638 inhibited GC cell growth in vitro. Subsequently, we identified that PLD1 is the target gene of miR-638 in GC, and silencing PLD1 expression phenocopied the inhibitory effect of miR-638 on GC cell proliferation. Furthermore, we observed that PLD1 was overexpressed in GC tissues, and high expression of PLD1 in GC predicted poor overall survival. In summary, we revealed that miR-638 functions as a tumor suppressor in GC through inhibiting PLD1.
Structure of the quaternary complex of histone H3-H4 heterodimer with chaperone ASF1 and the replicative helicase subunit MCM2
Hong Wang, Mingzhu Wang, Na Yang, Rui-Ming Xu
2015, 6(9): 693-697. doi: 10.1007/s13238-015-0190-0
Analysis of phosphorylation sites on autophagy proteins
Wenzhi Feng, Wenhao Zhang, Hui Wang, Lili Ma, Di Miao, Zexian Liu, Yu Xue, Haiteng Deng, Li Yu
2015, 6(9): 698-701. doi: 10.1007/s13238-015-0166-0

Current Issue

March, 2019

Volume 10, Issue 3

Pages 157-233

About the cover

Metastasis is the leading cause of human cancer deaths.Unfortunately, no approved drugs are available for antimetastatic treatment. In this study, high-throughputsequencing-based high-throughput screening (HTS2) anda breast cancer lung metastasis (BCLM)-associated genesignature were combined to discover anti-metastatic drugs.After screening of thousands of compounds, Shao et al.identifed Ponatinib as a BCLM inhibitor. Ponatinib signifcantlyinhibited the migration and mammosphere formation of breastcancer cells in vitro and blocked BCLM in multiple mousemodels. This study may facilitate the therapeutic treatment ofBCLM as well as other metastases.

Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang Beijing 100101, China

Tel: (86-10) 64888620   Fax: (86-10) 64880586   E-mail: protein_cell@biols.ac.cn