2013 Vol. 4(5)

Recollection
Experimental production of penicillin in Kunming in the early 1940s
Dingding Xu
2013, 4(5): 323-324. doi: 10.1007/s13238-013-3801-7
Abstract:
Reviews
Nuclear microRNAs and their unconventional role in regulating non-coding RNAs
Hongwei Liang, Junfeng Zhang, Ke Zen, Chen-Yu Zhang, Xi Chen
2013, 4(5): 325-330. doi: 10.1007/s13238-013-3001-5
Abstract:
MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that are involved in post-transcriptional gene regulation. It has long been assumed that miRNAs exert their roles only in the cytoplasm, where they recognize their target protein-coding messenger RNAs (mRNAs), and result in translational repression or target mRNA degradation. Recent studies, however, have revealed that mature miRNAs can also be transported from the cytoplasm to the nucleus and that these nuclear miRNAs can function in an unconventional manner to regulate the biogenesis and functions of ncRNAs (including miRNAs and long ncRNAs), adding a new layer of complexity to our understanding of gene regulation. In this review, we summarize recent literature on the working model of these unconventional miRNAs and speculate on their biological significance. We have every reason to believe that these novel models of miRNA function will become a major research topic in gene regulation in eukaryotes.
EZH2, an epigenetic driver of prostate cancer
Yeqing Angela Yang, Jindan Yu
2013, 4(5): 331-341. doi: 10.1007/s13238-013-2093-2
Abstract:
The histone methyltransferase EZH2 has been in the limelight of the field of cancer epigenetics for a decade now since it was first discovered to exhibit an elevated expression in metastatic prostate cancer. It persists to attract much scientific attention due to its important role in the process of cancer development and its potential of being an effective therapeutic target. Thus here we review the dysregulation of EZH2 in prostate cancer, its function, upstream regulators, downstream effectors, and current status of EZH2-targeting approaches. This review therefore provides a comprehensive overview of EZH2 in the context of prostate cancer.
Thymic epithelial cell development and differentiation: cellular and molecular regulation
Lina Sun, Haiying Luo, Hongran Li, Yong Zhao
2013, 4(5): 342-355. doi: 10.1007/s13238-013-3014-0
Abstract:
Thymic epithelial cells (TECs) are one of the most important components in thymic microenvironment supporting thymocyte development and maturation. TECs, composed of cortical and medullary TECs, are derived from a common bipotent progenitor, mediating thymocyte positive and negative selections. Multiple levels of signals including intracellular signaling networks and cell-cell interaction are required for TEC development and differentiation. Transcription factors Foxn1 and autoimmune regulator (Aire) are powerful regulators promoting TEC development and differentiation. Crosstalks with thymocytes and other stromal cells for extrinsic signals like RANKL, CD40L, lymphotoxin, fibroblast growth factor (FGF) and Wnt are also definitely required to establish a functional thymic microenvironment. In this review, we will summarize our current understanding about TEC development and differentiation, and its underlying multiple signal pathways.
Communication
Pseudovirus-based neuraminidase inhibition assays reveal potential H5N1 drug-resistant mutations
Yi Lu, Taijiao Jiang
2013, 4(5): 356-363. doi: 10.1007/s13238-013-2125-y
Abstract:
The use of antiviral drugs such as influenza neuraminidase (NA) inhibitors is a critical strategy to prevent and control flu pandemic, but this strategy faces the challenge of emerging drug-resistant strains. For a highly pathogenic avian influenza (HPAI) H5N1 virus, biosafety restrictions have significantly limited the efforts to monitor its drug responses and mechanisms involved. In this study, a rapid and biosafe assay based on NA pseudovirus was developed to study the resistance of HPAI H5N1 virus to NA inhibitor drugs. The H5N1 NA pseudovirus was comprehensively tested using oseltamivir-sensitive strains and their resistant mutants. Results were consistent with those in previous studies, in which live H5N1 viruses were used. Several oseltamivir-resistant mutations reported in human H1N1 were also identified to cause decreased oseltamivir sensitivity in H5N1 NA by using the H5N1 NA pseudovirus. Thus, H5N1 NA pseudoviruses could be used to monitor HPAI H5N1 drug resistance rapidly and safely.
Research articles
C13C4.5/Spinster, an evolutionarily conserved protein that regulates fertility in C. elegans through a lysosome-mediated lipid metabolism process
Mei Han, Hao Chang, Peng Zhang, Tao Chen, Yanhua Zhao, Yongdeng Zhang, Pingsheng Liu, Tao Xu, Pingyong Xu
2013, 4(5): 364-372. doi: 10.1007/s13238-013-3015-z
Abstract:
Lipid droplets, which are conserved across almost all species, are cytoplasmic organelles used to store neutral lipids. Identification of lipid droplet regulators will be conducive to resolving obesity and other fat-associated diseases. In this paper, we selected 11 candidates that might be associated with lipid metabolism in Caenorhabditis elegans. Using a BODIPY 493/503-based flow cytometry screen, 6 negative and 3 positive regulators of fat content were identified. We selected one negative regulator of lipid content, C13C4.5, for future study. C13C4.5 was mainly expressed in the worm intestine. We found that this gene was important for maintaining the metabolism of lipid droplets. Biochemical results revealed that 50% of triacylglycerol (TAG) was lost in C13C4.5 knockout worms. Stimulated Raman scattering (SRS) signals in C13C4.5 mutants showed only 49.6% of the fat content in the proximal intestinal region and 86.3% in the distal intestinal region compared with wild type animals. The mean values of lipid droplet size and intensity in C13C4.5 knockout animals were found to be significantly decreased compared with those in wild type worms. The LMP-1-labeled membrane structures in worm intestines were also enlarged in C13C4.5 mutant animals. Finally, fertility defects were found in C13C4.5(ok2087) mutants. Taken together, these results indicate that C13C4.5 may regulate the fertility of C. elegans by changing the size and fat content of lipid droplets by interfering with lysosomal morphology and function.
Heat shock cognate 71 (HSC71) regulates cellular antiviral response by impairing formation of VISA aggregates
Zhigang Liu, Shu-Wen Wu, Cao-Qi Lei, Qian Zhou, Shu Li, Hong-Bing Shu, Yan-Yi Wang
2013, 4(5): 373-382. doi: 10.1007/s13238-013-3902-3
Abstract:
In response to viral infection, RIG-I-like RNA helicases detect viral RNA and signal through the mitochondrial adapter protein VISA. VISA activation leads to rapid activation of transcription factors IRF3 and NF-κB, which collaborate to induce transcription of type I interferon (IFN) genes and cellular antiviral response. It has been demonstrated that VISA is activated by forming prionlike aggregates. However, how this process is regulated remains unknown. Here we show that overexpression of HSC71 resulted in potent inhibition of virus-triggered transcription of IFNB1 gene and cellular antiviral response. Consistently, knockdown of HSC71 had opposite effects. HSC71 interacted with VISA, and negatively regulated virus-triggered VISA aggregation. These findings suggest that HSC71 functions as a check against VISA-mediated antiviral response.
Distinct evolution process among type I interferon in mammals
Lei Xu, Limin Yang, Wenjun Liu
2013, 4(5): 383-392. doi: 10.1007/s13238-013-3021-1
Abstract:
Interferon (IFN) is thought to play an important role in the vertebrate immune system, but systemic knowledge of IFN evolution has yet to be elucidated. To evaluate the phylogenic distribution and evolutionary history of type I IFNs, 13genomes were searched using BLASTn program, and a phylogenetic tree of vertebrate type I IFNs was constructed. In the present study, an IFNδ-like gene in the human genome was identified, refuting the concept that humans have no IFNδ genes, and other mammalian IFN genes were also identified. In the phylogenetic tree, the mammalian IFNβ, IFNε, and IFNκ formed a clade separate from the other mammalian type I IFNs, while piscine and avian IFNs formed distinct clades. Based on this phylogenetic analysis and the various characteristics of type I IFNs, the evolutionary history of type I IFNs was further evaluated. Our data indicate that an ancestral IFNα-like gene forms a core from which new IFNs divided during vertebrate evolution. In addition, the data suggest how the other type I IFNs evolved from IFNα and shaped the complex type I IFN system. The promoters of type I IFNs were conserved among different mammals, as well as their genic regions. However, the intergenic regions of type I IFN clusters were not conserved among different mammals, demonstrating a high selection pressure upon type I IFNs during their evolution.
TNFR-1 on tumor cells contributes to the sensitivity of fibrosarcoma to chemotherapy
Jingjing Deng, Xiaopu Zhao, Lijie Rong, Xiao Li, Xiaoman Liu, Zhihai Qin
2013, 4(5): 393-401. doi: 10.1007/s13238-013-3008-y
Abstract:
Impaired tumor necrosis factor receptor-1 (TNFR-1) signaling has been found in some malignant tumors with poor prognosis. However, the exact role of TNFR-1 signaling in fibrosarcoma remains unclear. Here, we explored the question by comparing the growth of TNFR-1 deficient (Tnfr1-) and TNFR-1 competent (Tnfr1+) fibrosarcoma FB61 cells (FB61-m and FB61-R1) in mice. TNFR-1 expression on fibrosarcoma cells delayed their growth in vivo but not in vitro. Moreover, reduced FB61-R1 tumor growth was also obtained in TNFR-1 knockout mice. The mechanism relies mainly on the TNFR-1-mediated downregulation of vascular endothelial growth factor (VEGF) production by tumor cells. Importantly, treatment of FB61-m tumors with melphalan resulted in a short delay of tumor growth, followed by a quick remission. However, when FB61-R1 tumors were treated with melphalan, tumor growth was similarly delayed at first and then completely rejected. Our results reveal evidence for TNFR-1 on tumor cells as a prerequisite in chemotherapy for fibrosarcoma, and provide novel insight into the therapeutic approach against some types of tumors using TNFR-1 angonist.

Current Issue

May, 2019

Volume 10, Issue 5

Pages 313-387

About the cover

Left image:a mouse E9.5 embryo with Dgcr8 microRNA microprocessor conditionally knocked out in the heart. The heart in green was extremely dilated. Top right:cTnT immunostaining (in green) showed that the heart had very thin wall. Middle right:cTnT immunostaining (in red) showed lack of sarcomere structure in a microRNA free cardiomyocyte (CM). Insert:slow calcium transient frequency. Bottom right: transfection of miR-541 rescued sarcomere structure in Dgcr8 cKO CMs. cTnT immunostaining (in red) showed typical sarcomere structure. Insert:fast calcium transient frequency.

Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang Beijing 100101, China

Tel: (86-10) 64888620   Fax: (86-10) 64880586   E-mail: protein_cell@biols.ac.cn