2011 Vol. 2(2)

Reprogrammed astrocytes with old ‘memories’ blossom into region-specific neurons
Anuja Ghorpade
2011, 2(2): 87-89. doi: 10.1007/s13238-011-1025-2
Shijun Ma: keeping on exploring new areas to meet the challenge of human and social demands
Le Kang, Ming Li
2011, 2(2): 90-91. doi: 10.1007/s13238-011-1026-1
Acrosome reaction in the cumulus oophorus revisited: involvement of a novel spermreleased factor NYD-SP8
Ting Ting Sun, Chin Man Chung, Hsiao Chang Chan
2011, 2(2): 92-98. doi: 10.1007/s13238-011-1022-5
Fertilization is a process involving multiple steps that lead to the final fusion of one sperm and the oocyte to form the zygote. One of the steps, acrosome reaction (AR), is an exocytosis process, during which the outer acrosome membrane fuses with the inner sperm membrane, leading to the release of acrosome enzymes that facilitate sperm penetration of the egg investments. Though AR has been investigated for decades, the initial steps of AR in vivo, however, remain largely unknown. A well elucidated model holds the view that AR occurs on the surface of the zona pellucida (ZP), which is triggered by binding of sperm with one of the ZP glycosylated protein, ZP3. However, this model fails to explain the large number of ‘falsely’ acrosome-reacted sperms found within the cumulus layer in many species examined. With the emerging evidence of cross-talk between sperm and cumulus cells, the potential significance of AR in the cumulus oophorus, the outer layer of the egg, has been gradually revealed. Here we review the acrosome status within the cumulus layer, the cross-talk between sperm and cumulus cells with the involvement of a novel spermreleased factor, NYD-SP8, and re-evaluate the importance and physiological significance of the AR in the cumulus in fertilization.
LKB1 in lung cancerigenesis: a serine/threonine kinase as tumor suppresso
Yijun Gao, Gaoxiang Ge, Hongbin Ji
2011, 2(2): 99-107. doi: 10.1007/s13238-011-1021-6
Lung cancer is featured with high mortality, with a 15% five-year survival rate worldwide. Genetic alterations, such as loss of function of tumor suppressor genes, frequently contribute to lung cancer initiation, progression and metastasis. Liver kinase B1 (LKB1), as a serine/threonine kinase and tumor suppressor, is frequently mutated and inactivated in non-small cell lung cancer (NSCLC). Recent studies have provided strong evidences that LKB1 loss promotes lung cancerigenesis process, especially lung cancer progression and metastasis. This review will summarize recent progress on how LKB1 modulates the process of lung cancerigenesis, emphasizing on LKB1 downstream signaling pathways and biological functions. We will further discuss the potential development of prognostic biomarkers or therapeutic targets in lung cancer clinic based on the molecular alteration associated with deregulated LKB1 signaling.
Differential signaling of Flt3 activating mutations in acute myeloid leukemia: a working model
Perry M. Chan
2011, 2(2): 108-115. doi: 10.1007/s13238-011-1020-7
Receptor tyrosine kinases couple a wide variety of extracellular cues to cellular responses. The class Ⅲ subfamily comprises the platelet-derived growth factor receptor, c-Kit, Flt3 and c-Fms, all of which relay cell proliferation signals upon ligand binding. Accordingly, mutations in these proteins that confer ligand-independent activation are found in a subset of cancers. These mutations cluster in the juxtamembrane (JM) and catalytic tyrosine kinase domain (TKD) regions. In the case of acute myeloid leukemia (AML), the juxtamembrane (named ITD for internal tandem duplication) and TKD Flt3 mutants differ in their spectra of clinical outcomes. Although the mechanism of aberrant activation has been largely elucidated by biochemical and structural analyses of mutant kinases, the differences in disease presentation cannot be attributed to a change in substrate specificity or signaling strength of the catalytic domain. This review discusses the latest literature and presents a working model of differential Flt3 signaling based on mis-localized juxtamembrane autophosphorylation, to account for the disease variation. This will have bearing on therapeutic approaches in a complex disease such as AML, for which no efficacious drug yet exists.
Apolipoproteins and amyloid fibril formation in atherosclerosis
Chai Lean Teoh, Michael D. W. Griffin, Geoffrey J. Howlett
2011, 2(2): 116-127. doi: 10.1007/s13238-011-1013-6
Amyloid fibrils arise from the aggregation of misfolded proteins into highly-ordered structures. The accumulation of these fibrils along with some non-fibrillar constituents within amyloid plaques is associated with the pathogenesis of several human degenerative diseases. A number of plasma apolipoproteins, including apolipoprotein (apo) A-I, apoA-Ⅱ, apoC-Ⅱ and apoE are implicated in amyloid formation or influence amyloid formation by other proteins. We review present knowledge of amyloid formation by apolipoproteins in disease, with particular focus on atherosclerosis. Further insights into the molecular mechanisms underlying their amyloidogenic propensity are obtained from in vitro studies which describe factors affecting apolipoprotein amyloid fibril formation and interactions. Additionally, we outline the evidence that amyloid fibril formation by apolipoproteins might play a role in the development and progression of atherosclerosis, and highlight possible molecular mechanisms that could contribute to the pathogenesis of this disease.
Research articles
Reprogrammed mouse astrocytes retain a “memory” of tissue origin and possess more tendencies for neuronal differentiation than reprogrammed mouse embryonic fibroblasts
Changhai Tian, Yongxiang Wang, Lijun Sun, Kangmu Ma, Jialin C. Zheng
2011, 2(2): 128-140. doi: 10.1007/s13238-011-1012-7
Direct reprogramming of a variety of somatic cells with the transcription factors Oct4 (also called Pou5f1), Sox2 with either Klf4 and Myc or Lin28 and Nanog generates the induced pluripotent stem cells (iPSCs) with marker similarity to embryonic stem cells. However, the difference between iPSCs derived from different origins is unclear. In this study, we hypothesized that reprogrammed cells retain a "memory" of their origins and possess additional potential of related tissue differentiation. We reprogrammed primary mouse astrocytes via ectopic retroviral expression of OCT3/4, Sox2, Klf4 and Myc and found the iPSCs from mouse astrocytes expressed stem cell markers and formed teratomas in SCID mice containing derivatives of all three germ layers similar to mouse embryonic stem cells besides semblable morphologies. To test our hypothesis, we compared embryonic bodies (EBs) formation and neuronal differentiation between iPSCs from mouse embryonic fibroblasts (MEFsiPSCs) and iPSCs from mouse astrocytes (mAsiPSCs). We found that mAsiPSCs grew slower and possessed more potential for neuronal differentiation compared to MEFsiPSCs. Our results suggest that mAsiPSCs retain a "memory" of the central nervous system, which confers additional potential upon neuronal differentiation.
Expression of human FUS/TLS in yeast leads to protein aggregation and cytotoxicity, recapitulating key features of FUS proteinopathy
Kazuo Fushimi, Charles Long, Neha Jayaram, Xiaoping Chen, Liming Li, Jane Y. Wu
2011, 2(2): 141-149. doi: 10.1007/s13238-011-1014-5
Mutations in the fused in sarcoma/translocated in liposarcoma (FUS/TLS) gene have been associated with amyotrophic lateral sclerosis (ALS). FUS-positive neuropathology is reported in a range of neurodegenerative diseases, including ALS and fronto-temporal lobar degeneration with ubiquitin-positive pathology (FTLDU). To examine protein aggregation and cytotoxicity, we expressed human FUS protein in yeast. Expression of either wild type or ALS-associated R524S or P525L mutant FUS in yeast cells led to formation of aggregates and cytotoxicity, with the two ALS mutants showing increased cytotoxicity. Therefore, yeast cells expressing human FUS protein recapitulate key features of FUSpositive neurodegenerative diseases. Interestingly, a significant fraction of FUS expressing yeast cells stained by propidium iodide were without detectable protein aggregates, suggesting that membrane impairment and cellular damage caused by FUS expression may occur before protein aggregates become microscopically detectable and that aggregate formation might protect cells from FUS-mediated cytotoxicity. The N-terminus of FUS, containing the QGSY and G rich regions, is sufficient for the formation of aggregates but not cytotoxicity. The C-terminal domain, which contains a cluster of mutations, did not show aggregation or cytotoxicity. Similar to TDP-43 when expressed in yeast, FUS protein has the intrinsic property of forming aggregates in the absence of other human proteins. On the other hand, the aggregates formed by FUS are thioflavin T-positive and resistant to 0.5% sarkosyl, unlike TDP-43 when expressed in yeast cells. Furthermore, TDP-43 and FUS display distinct domain requirements in aggregate formation and cytotoxicity.
Microtubule-associated deacetylase HDAC6 promotes angiogenesis by regulating cell migration in an EB1-dependent manner
Dengwen Li, Songbo Xie, Yuan Ren, Lihong Huo, Jinmin Gao, Dandan Cui, Min Liu, Jun Zhou
2011, 2(2): 150-160. doi: 10.1007/s13238-011-1015-4
Angiogenesis, a process by which the preexisting blood vasculature gives rise to new capillary vessels, is associated with a variety of physiologic and pathologic conditions. However, the molecular mechanism underlying this important process remains poorly understood. Here we show that histone deacetylase 6 (HDAC6), a microtubule-associated enzyme critical for cell motility, contributes to angiogenesis by regulating the polarization and migration of vascular endothelial cells. Inhibition of HDAC6 activity impairs the formation of new blood vessels in chick embryos and in angioreactors implanted in mice. The requirement for HDAC6 in angiogenesis is corroborated in vitro by analysis of endothelial tube formation and capillary sprouting. Our data further show that HDAC6 stimulates membrane ruffling at the leading edge to promote cell polarization. In addition, microtubule end binding protein 1 (EB1) is important for HDAC6 to exert its activity towards the migration of endothelial cells and generation of capillary-like structures. These results thus identify HDAC6 as a novel player in the angiogenic process and offer novel insights into the molecular mechanism governing endothelial cell migration and angiogenesis.
Structural diversity of eukaryotic 18S rRNA and its impact on alignment and phylogenetic reconstruction
Qiang Xie, Jinzhong Lin, Yan Qin, Jianfu Zhou, Wenjun Bu
2011, 2(2): 161-170. doi: 10.1007/s13238-011-1017-2
Ribosomal RNAs are important because they catalyze the synthesis of peptides and proteins. Comparative studies of the secondary structure of 18S rRNA have revealed the basic locations of its many length-conserved and lengthvariable regions. In recent years, many more sequences of 18S rDNA with unusual lengths have been documented in GenBank. These data make it possible to recognize the diversity of the secondary and tertiary structures of 18S rRNAs and to identify the length-conserved parts of 18S rDNAs. The longest 18S rDNA sequences of almost every known eukaryotic phylum were included in this study. We illustrated the bioinformatics-based structure to show that, the regions that are more length-variable, regions that are less length-variable, the splicing sites for introns, and the sites of A-minor interactions are mostly distributed in different parts of the 18S rRNA. Additionally, this study revealed that some length-variable regions or insertion positions could be quite close to the functional part of the 18S rRNA of Foraminifera organisms. The tertiary structure as well as the secondary structure of 18S rRNA can be more diverse than what was previously supposed. Besides revealing how this interesting gene evolves, it can help to remove ambiguity from the alignment of eukaryotic 18S rDNAs and to improve the performance of 18S rDNA in phylogenetic reconstruction. Six nucleotides shared by Archaea and Eukaryota but rarely by Bacteria are also reported here for the first time, which might further support the supposed origin of eukaryote from archaeans.

Current Issue

May, 2019

Volume 10, Issue 5

Pages 313-387

About the cover

Left image:a mouse E9.5 embryo with Dgcr8 microRNA microprocessor conditionally knocked out in the heart. The heart in green was extremely dilated. Top right:cTnT immunostaining (in green) showed that the heart had very thin wall. Middle right:cTnT immunostaining (in red) showed lack of sarcomere structure in a microRNA free cardiomyocyte (CM). Insert:slow calcium transient frequency. Bottom right: transfection of miR-541 rescued sarcomere structure in Dgcr8 cKO CMs. cTnT immunostaining (in red) showed typical sarcomere structure. Insert:fast calcium transient frequency.

Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang Beijing 100101, China

Tel: (86-10) 64888620   Fax: (86-10) 64880586   E-mail: protein_cell@biols.ac.cn